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ABSTRACT

In this report, attention is focused on a method of investi-

gating physical problems, which is referred to as the "direct"

method. The method is then applied to the problems of liquid

rocket engine combustion and detonations•

The "direct" method of analyzing a physical problem consists

of i) measuring some specific variables ii) solving basic equations

using the measured quantities to determine more of the unknown vari-

_bles and, in the process, learning more about the nature of the phys-

ical problem and then iii) formulating the proper, complete physical

model• This method contrasts with the more conventional approach

where the complete model is proposed first• Occasionally the "direct"

method has been used in the past (and called the "inverse" approach),

b_t _re as a c]ever trick to solve a specific problem than as a gen-

eral method To pr_,_ _h_ generality of _ ,.A-_.. _h_ _his

author has formalized the steps for its application• Advantages are

shown in that the "d_rect" method: makes optimal use of the experi-

mental data; provides a check on their accuracy; leads to mathemati-

cal simplifications and to the possibility of checking assumptions;

allows one to gain insight into an unresolved physical problem and

helps to define a correct model for it. The author is not aware

of any previous generalization of the "direct" method and believes

that such a generalization should encourage other applications.

By applying the "direct" method to the problem of steady liquid

rocket combustion, it is shown that static pressure measurements

along the engine are sufficient to determine all the gas variables
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and the amount of vaporized propellant if only one propellant is in

liquid form. No use is made of any drop drag, vaporization or dis-

tribution models; this can simplify development-stage engine studies.

Useful to analytical instability studies are the conclusions (for

the LOX/ethanol system) that: the steady-state is not axially uni-

form; the combustion is axially more distributed than current drop

drag and vaporization models predict; the use of a distribution

function is not essential; drag and vaporization effects on the

momentum equation of the gas are of the same order; the energy

source is not proportional to the mass source; and the initial mo-

menta of the liquids should not be neglected in steady-state com-

putations. A non axia]!y uniform steady-state contrasts

with the uniformity assumption usually made in theoretical studies

and it confirms the findings of other investigators (e.g., Rocket-

dyne group).

The "direct" method has previously been applied to various

aspects of the detonation problem. Here it leads to the derivation

of a new functional form for the equation of state of thc preducts

of solid explosives. However, most of the study is concentrated

on a method which allows one to compute the detonation variables

without knowing the equation of state of the products if the de-

tonation velocity versus the loading density is known. Its re-

lationship to the Chapman-Jouguet theory is investigated. The two

methods, although apparently different, are shown to yield very

similar results. It is shown that a rough form of this method was

previously used by Zel'dovich, although he thought he was applying

the Chapman-Jouguet condition.
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INTRODUCTION

In the Abstract, the content of this report was briefly

stunmarized. This section is now used to introduce the reader

to the subjects treated in this report. Three main subjects,

rather than just one, are discussed so that some preliminary

considerations on their inter-relationship might be of help

to the reader.

The three subjects are i) the "direct" method (Section i),

ii) one-dimensional, laminar detonation problems (Section 2),

and iii) the steady rocket combustion of the LOX/ethanol sys-

tem (Section 3).

Interest is centered on the "direct" method; however, the

two specific problems have been treated as thoroughly as possible

so as to constitute two relatively complete studies. The studi_,s

are used as examples of applications of the "direct" method.

Accordingly, there is no concluding section to the over-all

report, but rather two concluding sections, one for the detona-

tion problem (Section 2.6) and the other for the steady combus-

tion of the LOX/ethanol system (Section 3.7). There was no need

for a concluding section on the "direct" method, since the method

and related properties are explained in Section 1 and applications

are given in the other sections. The section on steady combustion

of the LOX/ethanol system is the longest of all the sections be-

cause this was the topic of principal concern and effort at

Princeton.

In Section I, the "direct" method of solving a physical

problem is defined, and its properties are listed. Here it might

be useful to introduce this method in a less rigorous, more
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discoursive way. A researcher who has to solve a new problem

can often make some assumptions and write equations that, from

his previous experience, he is rather confident will be valid.

To complete his model, however, other assumptions and equations

will be necessary whose validity is more uncertain and will be

finally proved or disproved by experiments. Making these more

uncertain assumptions, solving the complete set of equations and

comparing the results with experimental data is what is here

called the "conventional" way of solving a problem. The "direct"

way consists of avoiding the use of the more uncertain assumptions

and using instead experimental data. One looks at the equations

which are believed to be reliable and decides which variables

should be measured to avoid making the more uncertain assumptions.

After having measured these variables, the more reliable equa-

tions are solved, and only then are the more uncertain assumptions

studied. Both methods require experimental data sooner or later.

The "direct" method uses this data more efficiently and offers

other specific advantages which are listed in this report. This

method is here called "direct" since it makes direct use of the

experimental data to gain maximum information about a given prob-

lem rather than using them only to verify already obtained solu-

tions. The "direct" method seems to the author to be the more

natural one, particularly for complicated physical problems, since,

if for no c,ther reasons, it squeezes maximum information out of

a set of experimental data. This method has previously been

applied by other researchers (and called the "inverse" approach)

but this auth,_r is not aware of any previous formalization of it

and believes that some of the properties, listed in this report,
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either were not known or were overlooked. Formalizing the

method should aid in its application.

In Section 2.0, where laminar one-dimensional steady detona-

tions are considered, a method is introduced which allows one to

compute the detonation parameters without knowing the equation of

state of the products but using "directly" measured detonation

velocities versus loading density. This method is here called

the envelope method and gives results which are close to those

given by the various Chapman-Jouguet models. The physical reasons

why this method leads to reasonably good results for both gaseous

and solid explosives are not known. The relationship of the en-

velope method to the various Chapman-Jouguet models is illustra-

ted and, in the process, the state of the art of laminar one-

dimensional steady detonation studies is reviewed. A functional

form for the equation of state of the products of solid explo-

sives is then given.

In Section 3.0, the "direct" method is applied to the prob-

lem of steady liquid rocket combustion. It is then shown that

the gas variables (pressure, velocity, density, temperature,

composition, etc.) and the amount of vaporized propellant can be

calculated if any o_e of the gas variables is first measured along

the engine (generally static pressure or gas velocity) and if only

one propellant is in liquid form at the station at which the gas

variable is measured (if two propellants are present in liquid

form, then two gas variables should be measured). No use is made

of any droplet drag, vaporization, breakup or distribution models

and the detailed knowledge of the processes occurring in the in-

jector region is not necessary. Those models are necessary, on

the contrary, if one follows the "conventional" approach. The
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validity of the results obtained by conventional approaches are

then subject to the validity of those models, whereas the results

obtained by the direct method are not. By the direct method it was

thus possible to show that the assumption of instantaneous chemical

equilibrium of the reaction products leads to good results for the

LOX/ethanol system. It was also shown that the steady state of the

LOX/ethanol system is likely to exhibit marked axial nonuniformaties.

Similar nonuniformities were previously calculated by conventional

approaches by other researchers (at Rocketdyne, for example) and had

been previously indicated by c* measurements (at Princetor& for ex-

ample). However conventional studies include so many uncertain

and sensitive assumptions that conclusions about the validity

of any one of them must be considered only indicative (see for

example the sensitivity of steady-state computations to the vapori-

zation rate equation, to the initial d_op radius and to the drag

equation in Section 3.6). Similarly c* measurements yield only

indicative results. Possibly for these reasons the steady state

has always been assumed to be axially uniform in theoretical in-

_k_1_, _+,_,_.._ T_- _ then shown that axial nonuniformity can

lower the frequency of a perturbation wave by some 2_/o with respect

to its value calculated under the uniformity assumptions (Section

3.5). Other results of interest to theoretical instability studies

have already been pointed out in the abstract and are summarized

in Section 3.7. It should also be pointed out that this study was

undertaken with the purpose of better relating instability studies

to the actual steady combustion, Thus the effort was not toward

considering the most complete of the available steady-state models

but rather toward finding the simplest schematization that would

contain the main physical elements and lead to a reasonably accur-

ate description.

|



SECTION 1.0 THE "DIRECT" METHOD

The "conventional" way of investigating a physical problem

consists of the following three steps:

i) Formulation of a model

ii) Solution of corresponding equations

iii) Comparison of theoretical results with ex-

perimental data.

The "direct" way of investigating the same physical problem

consists of the following steps:

i) Collection of experimental data

ii) Solution of basic equations using direct

experimental data

iii) Search of the model.

To illustrate the meaning of the above definitions, a hy-

pothetical example is given first. Next, the two specific ap-

plications treated in this report are introduced from the view

point of the direct approach. These are, the problem of deto-

nation, and that of steady liquid propellants rocket combustion.

Finally the properties of the direct method are listed. The

properties will again be pointed out during the development of

the two specific applications.

i.i The General Idea and an Illustrative Example

For simplicity, consider a one-dimensional, steady flow in

a duct of slowly varying cross sectional area. Assume that both

the thermal and the caloric equations of state of the fluid are

not known. Assume also that latent energy is added to the flow

by some chemical reaction of unknown nature or rate. The fol-



lowing equations can then be written between any two sections

of the duct:

t •

f,,._ + _, +_ - e,+-PJ- +__.e.T /L t.r,

p: _,(p "r" X; )

. .(r, A xi)

where the first three equations represent the conservation of

mass, momentum and energy (with the energy source, _ , unknown)

and the last two represent the missing thermal and caloric equa-

tions of state.

The conventional way of attacking the problem would be that

of formulating a model which would lead to expressions for the

energy source and for the equations of state. The above five

equations would then be solved. Finally a quantity would be

measured, say, the pressure along the duct and compared with the

predicted one. The model would be modified until theoretical

and experimental results match. Notice the fo!!c_4ing points:

i) The experimental data were used only to check

the theoretical results and helped little or

not at all in the process of formulating the

model.

2) There is no way of knowing how accurate the

experimental data are. The experimental data

could be in error and the model might be ad-

justed to predict the wrong data.
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3) In the theoretical study a system of five

coupled equations had to be solved. To

reach the solution certain approximations

might be necessary.

4) In the formulation of the model many assump-

tions are usually made. If the model yields

results not quite in agreement with the ex-

perimental ones, some difficulty may arise in

deciding which of the assumptions should be

modified.

The direct way of attacking the problem is to use the

measured experimental pressure to solve the first two conserva-

tion equations without an}[ assumption concerning the energy source

and the equations of state. One notices that the first two equa-

tions contain three unknowns, _. _ _ . _"%,us, if _ is measured

and p and %& are given at some initial section, they can be com-

Setting ]_-- ",/', 2 "_. 14,/,,, ,-_/_ _-. A./,, one gets,

____,

! =

Now the investigator not only knows _ but also knows_and%_ and he

has more information on which to base his search for a model.

Notice the following points:

i) Experimental data are needed in both approaches

sooner or later. In the direct approach one

squeezes more out of the experimental data since

the knowledge of @ led to the knowledge of



and 14, without any more assumptions than were

already imbedded in the equations (Experimental

Data Information Optimization).

2) After having determined p and _ one can make

a few measurements of _ and see if it agrees

with that calculated by the first two equations.

If it does, the first two equations are correct

and pressure measurements are reliable. If it

does not, either there is an error in the meas-

urements or in the first two equations (for ex-

ample, friction should not have been neglected).

(Experimental Data Check).

3) The system of five equations has been split into

two systems. A system of two equations (already

solved) and a system containing the remaining

three equations still to be solved. In the di-

rect approach the mathematics is then simpler.

(Mathematical Simplification an n c_ _1_ng_

4) When the equations were split so were the as-

sumptions. The assumptions going into the first

two equations can be checked independently of

the assumptions going into the remaining three

equations (Assumptions Splitting).

The direct method offers other advantages which will be listed

in the next section. They fundamentally stem from the fact that

one can solve for some of the unknowns even if he does not know

many aspects of his problem. The unknown aspects can then more
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easily be investigated, since more information is then available

and some features or properties of the problem have already been

determined (Parameterization and Maximum Information). The first

two steps of the "direct" method have thus been illustrated:

i) gathering of the experimental data, ii) solution of

basic equations directly using experimental data. The third

step, i.e., search of the model, can then be carried out by either

studying that part of the solution which has become available and

try to infer from it the complete solution or by trying several

possible models and seeing how they fit the reduced set of equa-

tions (the last three equations, in the above example). The lat-

ter approach is expected to be the one more commonly used. It

should be stated that the above considerations are not just con-

jectures. They are strictly facts that this author has estab-

lished in specific applications of the direct method. Two of

such applications will be discussed at length in this report.

The first application is to the problem of the detonation

Ot solid explosives. The nll_±*l_ cquauxu** _ ..... _'_=+_" _9

state of the explosion products. The measured quantity is the

detonation velocity versus the density of the explosive. Re-

searchers using the "conventional" approach assumed several

types of equation of state, solved their equations and compared

their calculated velocities with the measured one. By the proper

choice of a few constants appearing in their equation of state,

they all were able to correlate well with the measured parameter.

Their calculated energies and temperatures, however, varied con-

spicuously. By the "direct" approach (using as known quantity
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the measured detonation velocity versus the density of the ex-

plosive) it was possible to show that detonation pressure, dens-

ity and particle velocity can be calculated without using any

equation of state while the detonation energy and temperatures

are functions of the assumed equation of state. The general

form of the equation of state was also derived° The problem of

the actual equation of state is still unsolved yet one can now

calculate many parameters without knowing the equation of state,

and the class of functions, to which this equation of state be-

longs is now known. This much was not known previous to the

application of the "direct" method, yet no extra information

was used in the application of the "direct" method than has al-

ways been used in the application of the "conventional" method.

Finally, the calculations by the "direct" method were consider-

ably simpler than those required by the "conventional" method.

The s_,cond application is to the problem of the steady state in

liquid propellant rocket engines. The missing relations are

_ .......... 4._ _ _,_4_ _ _,=_ ,_r1_-_ The meas-

ured quantity is the static pressure or the particle velocity

along the engine. Researchers using the "conventional" approach

assumed certain droplet distribution, drag, and vaporization

models, solved the equations and compared their calculated static

pressure (or any other parameter) with the measured one. By the

"direct" approach the measured static pressure (or particle ve-

locity) was used. Then without any droplet distribution, drag,

and vaporization model, all the combustion variables were cal-

culated, namely: temperature, density, particle velocity, chem-
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ical composition, flux of unvaporized fuel, etc. During this

process much was learned about steady liquid propellant rocket

combustion. Then some droplet distribution, drag, and vapori-

zation models were studied with the purpose of selecting that

one which gives all the calculated parameters. A third appli-

cation of the "direct" method is briefly reviewed in Section

4.0. It is not due to this author but to Ya. B. Zel'dovich.

It is in connection with the problem of unsteady solid propel-

lant combustion where Zel'dovich suggested the direct use of

experimental data thus avoiding the problem of formulating a

model for the gaseous flame. Zel'dovich used directly experi-

mental data also in connection with the problem of solid ex-

plosives (Section 2.2). Thus it seems as if Zel'dovich found

it natural and rewarding to think "directly." A fourth appli-

cation of the "direct" method is not discussed in this thesis

but will be discussed in a separate report. It is in connec-

tion with unsteady liquid propellant combustion. It has been

a very difficult application on which this _..__"_ _..__ ......._,1_lly

spent most of his time as a graduate student. Professor

Crocco suggested that a step shock be generated at the nozzle

end of a liquid propellant rocket motor and its changes, as it

moves toward the injector into the active combustion zone, be

measured with the intent of studying the unsteady processes by

which energy is fed into the shock. By measuring the pressure

after the shock front at several locations along the motor,

one experimentally determines _-_(_). The one-dimensional,

unsteady mass, momentum and energy conservation equations can
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then be used to computef:_ (_s#), Z(-- _ (z _ ) and _.-_ (w,_)

where _ is the unsteady mass-energy source. It is not neces-

sary to postulate any droplet distribution, drag and vaporiza-

tion models. On the contrary, such models can be studied a pos-

teriori after having determined the unsteady pressure, density,

particle velocity and mass-energy sources However° in order to

obtain meaningful results from this unsteady liquid propellant

combustion study, it was found necessary to achieve first a more

accurate and specifio understanding of the steady liquid propel-

lant combustion. This originated the investigation of the steady

combustion of the LOX/ethanol system reported in Section 3.0.

1.2 Properties Of The "Direct" Method

The above examples illustrate the usefulness of the "direct"

method in cases when the model of a certain process is expected

to be complex and when many models would seem to be just as rea-

sonable. The properties of "direct" method are:

i) Experimental Data Information Optimization:

The use of some experimental data directly in

the basic equations allows the evaluation of

all (or most of) the unknowns of a given prob-

lem. One has thus extracted maximum informa-

tion from the experimental knowledge of a few

parameters since by that he has calculated all

(or most of) the unknowns.

2) Experimental Data Check:

It would appear that the "direct" approach re-

quired more accurate experimental measurements.
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3)

To be used in the "direct" approach, the data must

consistently fall on identifiable lines. Can one

honestly use data which do not consistently fall

on identifiable lines to verify the predictions

of the "conventional" method? Researchers using

the "conventional" approach often do not bother

checking too closely the validity of the experi-

mental data. On the other hand, experimentalists

may not select the proper parameters to measure

or may honestly be unaware of their experimental

errors. Practice has shown that in using the

"direct" method, seemingly consistent data were

actually found to be in error and, subsequent!y_

the source of error was identified. The reason

is that when the experimental data are used in the

basic equations and the equations are solved, the

newly determined parameters often take on unreal-

istic values if the data used are in error.

Mathematical Simplification:

Both methods require the same amount of experi-

mental data and the solution of the same basic

equations but for different unknowns. The achiev-

ing of the solution of the same basic equations is

then a problem of different difficulty in the two

methods. In the "direct" method one always has to

solve fewer equations than in the "conventional"

one. In the "conventional" approach, a primary
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4)

source of error may be hidden in the approximations

which are made to reach the more difficult solution.

Set Splitting:

An important aspect of the "direct" method is its

splitting of the equations into uncoupled groups.

This in turn, simplifies further the task of solv-

ing the equations and occasionally might reduce the

number of parameters to be measured. In the prev-

ious example, the researcher investigating the pipe

flow could have postulated a model in which all the

five unknowns entered, and his five equations would

then have been coupled. On the other hand, by meas-

uring _ and u_ing it directly, his first two equa-

tions become uncoupled (containing only F and _. as

unknowns) and this is quite independent of what the

actual model would then turn out to be. Similarly,

in the solid explosion study, the system was split

into two systems: un_ first one _4_4_ _r_]n_

ties, pressure and density, could be solved com-

pletely; the second one containing temperature and

energies,and including the unknown equation of state,

led only to the derivation of functional relation-

ships between its unknowns. The unknowns also split

- those belonging to one group will be completely

determined, those belonging to the other group will

be bound by functional relationships.



14

5) Parametrization:

In the "direct" method, one looks at his basic equa-

tions and determines how many unknowns need to be

measured to solve them without formulating a complex

model. Usually one or more variables of the form

_-_(_) or _=_) would need to be measured. If he

measures as many unknowns as he needs he can then

solve completely his equations for all the remaining

unknowns. On the other hand, if one measures less

unknowns than he would need he can still expect to

be able to calculate completely some of the variables

and to establish _unc_ona__ .....ire!a_innships between the

remaining ones! This is due primarily to the split-

ting property of the "direct" approach. In the case

of the solid explosive, the unknown equation of state

is of the form a-_ (z _ )whereas the measured quantity

(detonation velocity versus density of the explosive)

is of the form _t_ _). Still many va ..... u ...........

pletely determined because the knowledge of the de-

tonation velocity uncoupled the system of equations.

However, in the liquid propellant steady-state study,

it turned out that instead of needing the full meas-

urement of two unknowns, as it appeared to be neces-

sary to split the system of equations, the measurement

of one unknown was actually sufficient. This was

achieved by finding solutions for specific values of

the second unknown. Thus a parametric set of solu-
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6)

tions were obtained rather than an unique solution.

The family of solutions, however, turned out to be

narrow enough to be used as an unique solution.

The parametrization property is not really a prop-

erty of the "direct" approach but rather a property

of the physical process under consideration. How-

ever, it is when one starts thinking in terms of re-

stricted solutions that the possibility of useful

parametric solutions unfolds.

Assumption Splitting:

Associated with the property of splitting the equa-

tions into uncoupled groups, is the property of split-

ting the assumptions into groups as well. This prop-

erty is important and therefore is given separate

headings° In writing equations for a certain physi-

cal phenomenon several assumptions are made whose

validity may be equally uncertain. If the "conven-

tional" --_-_ yi _- _1,,_ ,.,_4_ _,_

agree with experimental data, the problem remains of

determining which of the leading assumptions is to be

corrected. The "direct" method yields the solution

of only some of the equations which incorporate only

some of the leading assumptions. If the results of

"direct" method don't agree with further experimental

data, one has then to review only a fraction of the

leading assumptions. Thus, in the example given in

this section, after having solved the direct problem,
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one might want to verify the validity of his so-

lution by measuring, say the gas velocity. Should

the gas velocity disagree with the calculated one,

the assumption of frictionless flow (the only sig-

nificant assumption going into the mass and momen-

tum equation as they are written), would be the

only one which could be wrong. But had the re-

searcher introduced a model through some assump-

tions and followed the "conventional" method, it

would have been more difficult to decide whether

the assumption of frictionless flow or those lead-

ing to his model were the wrong ones. Simjlarily

in the liquid propellant steady-state study the

only leading assumptions entering into the reduced

set of equations, used in the "direct" method, was

that of chemical equilibrium of the reaction prod-

ucts. This assumption could then be checked sep-

arately. Had one used the complete set of equa-

tions and followed the "conventional" approach fur-

ther uncertain assumptions would have been needed

about droplet distribution, motion and vaporization

and separation of the effects might have been im-

possible.

Maximum Information:

This last property is possibly the most important

yet the most difficult to define specifically.

Having a complex problem, there is always some
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variable which can be readily measured (like pressure

in fluid dynamics problems). The basic equations can

then be studied using directly the measured variable.

During this study a wealth of information about the

nature of the problem, the properties of its solution,

the ordering of the terms in the various equations and

the mathematical techniques to be used in the study of

the complete set of equations become available. This

is best illustrated by the discussion of the results

obtained by the "direct" approach for the problem of

steady-state liquid propellant combustion. It can be

stated that, in general, these results can be expected

to be of practical and theoretical values and can be

obtained within the first two steps of the "direct"

approach: i) measurement of some unknowns ii) solu-

tion of some of the equations using the measured un-

knowns, i.e., even before getting through the third

and last step (determination of the proper model)

which would complete the application of the "direct"

method.

Both "direct" and "conventional" methods are equally effective

when the problem under consideration is physically simple and re-

lated to some problem whose secret is already known. It is not

difficult then to guess a reasonably good model for the new prob-

lem, neither should it be difficult to uncover the new law by

studying the results of the "direct" method. If the problem is

a complicated one, requiring one or more uncertain, yet far-
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reaching, assumptions then the "direct" method should be serious-

ly considered as the first one to be applied for its seven prop-

erties given above.
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2.0 DETONATIONPROBLEMS

2.1 Introduction

In recent years "it has been indisputably established ex-

perimentally that the wave front of all self sustaining detona-

tions is three dimensional. ''I The wave front of what used to be

the Chapman-Jouguet (C-J), steady, one-dimensional, laminar de-

tonation front, with the Zel'dovich-von Neumann-Doring (ZND)

structure, of tube confined explosions has now been proved to

be actually made up of unsteady three dimensional shock patterns

which include Mach stems, curved shocks and transverse waves.

Most significantly the thickness of this unsteady three-dimen-

sional front is of the order of i0 times the thickness of the

old reaction zone. Within this new, nonuniform front, sharp

variations in the values of the various detonation variables

are found to exist so that concepts of average values become

hard to justify. The practical success of the various versions

of the C-J model in predicting detonation velocities is still

unquestionably recognized. Why they work so well will, sooner

or later, be explained. Presently, however, one must avoid

drawing too many conclusions based on theoretical considerations

of the C-J models.

The original suggestion of Chapman, that the actual detona-

tion velocity is the smallest of all velocities compatible with

the one-dimensional conservation equation, was not justified and

was accepted because it was successful in predicting the de-

tonation velocity of many explosives. In this section another

unjustified suggestion is made by which detonation pressure (_),
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density ( p ) and particle velocity (_-) can be calculated if the

detonation velocity _)versus the loading density (_) is given.

This suggestion turned out being a reinterpretation, an exten-

sion and an improvement of the procedure used by Zel'dovich and

Kompaneets 2 to show that, for solid explosives, the detonation

density is approximately 4/3 times the loading density. What

follows is again a one-dimensional treatment of the detonation

problem. In view of the complexity of the actual detonation

structure, the quantities herein called detonation variables

will have to be interpreted as average values at some distance

after the front roughly coinciding with the old C-J plane quan-

tities.

This section is organized as follows: First the envelope

method is introduced. Next its relationship to the Zel°dovich -

Komp_neets method of calculating the detonation parameters of

solid explosives is illustrated. Application of the method to

gaseous and solid explosives and comparison with experimental

• __
results are then made. The relationship between _iSL** _........

and the various versions of the C-J model is then discussed.

For the purpose of this discussion, a brief review of the va-

rious C-J models is necessary and it is then given even though

it is recognized that they are now largely superceded. In this

context it might be interesting to notice that the conclusion

of the review is that the C-J model never quite achieved self

completeness. Finally, the problem of the equation of state of

the reaction products of solid explosives is re-examined in the

light of the results obtained with the current method.
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For the one-dimensional case, the conservation equations

through the shock can be written as follows:

(Mass Conservation)

(Momentum Conservation)

u Cv- )

_o

(Energy Conservation)

(i)

(2)

p.,.I,.(,r.-,,Q (3)

Where subscripted variables refer to conditions ahead of the

shr_k and the others to conditions at any distance (s) behind

the shock where conditions are stationary with respect to it.

At _ , • is the internal energy of the products and is related

to # ,_ by the caloric equation of state, and _" _ the chemical

heat released (difference between the enthalpy of formation of

the products and that of the reactants) and in general is also

a function of # , _ . Mass and momentum conservation equations

also give:

•U-z h-l',,

,* _o-_
(4)

_'o _'(,,-)Even assuming that e-e(_,r) and

tions I, 2 and 3 contain four unknowns: _ , _ , _¢. and_ .

Thus the one-dimensional model is underspecified and some ad-

ditional assumption needs to be made.

are known, Equa-

2.2 The Envelope Method

Equation 4 defines straight lines (Rayleigh lines) in the

plane if _ , _ , _ are given. For given If, _ ,r. the
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actual solution of the one-di-

m_rlsional problem will be rep-

resented by one point of the

corresponding Rayleigh line

(Point A). Keeping the same

initial pressure, but increas-

ing slightly the initial dens-

ity of the explosive, the de-

tonation pressure is known to

increase, so that the new so-

lution is represented by Point B.

', . 8 _

LINE%

A

• -b .....

It is assumed that, as _ varies, the point representing the so-

lution of the one dimensional problem moves along the envelope

@enerated by the correspondin_ Rayleigh lines (envelope assump-

tion). This assumption and the conservation equations constitute

a complete system of equations for the solution of the one di-

mensional problem. (In essence this envelope assumption replaces

thp c-J assnmption). Solving the complete set of equations with

the use of the envelope assumption would be the "conventional"

way of approaching the problem. However, detonation velocities

have been measured for many explosives for various loading dens-

ities. It is thus known 3 that the detonation velocity of common

gaseous mixtures is approximately constant for a given _ and for

varying within a wide range (_a_), while the detonation ve-

locity of common solid explosives increases with _ . This in-

crease is linear (V=_+$_) over a relatively narrow range of_ 's.

In keeping then with the "direct" way of looking at physical
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problems, the knowledge of _s_/(pe ) will be used directly to-

gether with the conservation equations and the envelope assump-

tion to gain as much information about the various detonation

variables as possible.

It is then assumed that _2sT2( _'o ) is known from experiments

and the envelope of the Rayleigh lines is determined eliminating

_ro (the parameter of the envelope) between Equation 4 and its

derivative with respect to _ !_.._r_,._ :'-. _

_t (6)

(7)

Equation 7, for any givenVtT_( _ ), determines If=_(_o) .

Thus, for Tf. a4_/_" one finds

(8)

Having _8 _( _ ), Equation 6 can be used to give .b.J. (_ _. ) and

mass conservation will give _-_( _0 )

) V(.-')_= uC,- _ = (9)

Where K is a weak function of _ for most solid explosives and

only its average value ( M ) may usually, be considered (see

Table II Column i0). Eliminating _ between Equation 8 and

Equation 6 one finds the equation of the envelope of the Rayleigh

lines and, by assumption, the locus of the detonation states

I,- • - (lO)- P"
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For a qiven _ , the tangent to the above envelope from _ , _

gives the detonation variables.

Further specializing to the case in which V = _ (gaseous ex-

plosives) one finds

K -'- I/z (11)

r--- V'o/Z

%&,,, V/2.

And for the case in which _2 = 4/_.

(12)

4 _V',: co._,'. (13)

(14)

(roughly valid for solid ex-

plosives) one finds

: 3/÷ (15)

D " _U_6 v- = ,r. # b_'_

: u'/_

However, for solid explosives, one usually should

and the following relationships

(16)

f-Ore $Ir.
(17)

(18)

use V "-_&+_/_r.

,o. TNT] (19)

(20)

(21)

%(. : _(i-K') (22)
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For solid explosives, Zel'dovich and Kompaneets 2 obtained,

Equations 15 through 18 by a method which, in appearance, is dif-

ferent from the previous one, but which will be shown to be ac-

tually identical. First they set

= _/_ (23)%r

Next they assumed that _o/_, with K a constant to be determined,

and substituted tf and _ into Equation 4 (notice the equation

of the Rayleigh lines) thus obtaining

(24)

Next they stated: "We can then determine the constant K from

the condition that the smallest possible detonation velocity

3
must be achieved in experiment. We now specify the law _- _

and write (using again Equation 4)

v% P! = B 14
u

&C f-8o)r.cr-_.)
(25)

We now determine the value of

B and 7o • In order to do this we calculate

J! & (r-;.)L

= ..... _'_ _r _ m_n_mllm g_ven

(26)

From which it follows that

4

+ 4
II

(27)

So they derived Equations 15 through 18. It would appear that
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Zel'dovich and Kompaneets satisfied the C-J condition of minimum

detonation velocity, but their calculation involves only momentum

and mass conservation (from which Equation 4 is derived)whereas

the C-J condition requires the selection of the minimum detonation

velocity compatible with the complete system of equations (in-

cluding the energy equation). They actually found the minimum

detonation velocity compatible with Equation 4, i.e., the de-

tonation velocity which is obtained by drawing the tangent to

the envelope of the Rayleigh lines from _ , _ . Actually they

overspecified their problem by assuming _:_/K and found a solu-

tion because the overspecification happened to be compatible.

To show this and to prove that Zel'dovich and Kompaneets method

leads exactly to Equation 7, one proceeds as follows: Given

_f. Dr ( _o ), assume that Lre -_ 7 (_) (where _ (_) is an arbitrary

function of _ and setting _Po-7(_-) is equivalent to assuming

that _ is an arbitrary function of _ ). Substitute V-If (_)

and _. T(r) into Equation 24 to obtain _ as a function of

Substitute _ back in Equation 4 to obtain _/ as a function of

U" and

= ----- C 7(

Set the derivative of [2' with respect to _ equal to zero (which

t
is equivalent to setting the derivative of _' with respect to ._

equal to zero) and recall that _7(_) thus obtaining

;;'[(; ,v';-u)÷ -o

|
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one finds the condition by which_._; (v)

given

C • V °r- v = o

Excluding the trivial solutions 7 • (_ #) and 7J== = 0 ( _. = const.),

is determined if V ( _o ) is

Which shows that, in general, one cannot start with selecting a

particular form of 7 (_) and still satisfy the above equation.

The function _ =7(_) is uniquely determined by the above equa-

tion when _ =V(_) is given. Thus, for _= _ /_one finds _14_3.

s/_y_
Had Sel'dovich and Kompaneets started with, say, pm _ _ with_

and _ constants to be determined and proceeded as they indicated

they would have found _=_ /3 which shows that, for K to be

constant as assumed, -_. must be equal to i. Thus finding again

_.4_/3 • In conclusion, the functional dependence _= _e/_

is not an assumption, as Zel'dovich and Kompaneets state, but is

the unique solution of the problem° Re-arranging the terms of

the above equations, one finds again Equation 7, thus proving the

equivalence of the two approaches and explaining the real mean-

ing of th_ _]'dovich and Kompaneets method_

2.3 Comparison with Experimental Results

Before proceeding to some comparisons with experimental re-

sults it should be reminded that detonation velocity measurements

can, it general, be considered accurate whereas detonation pressure

measurements are, in general, less precise. This is so mostly

because of the difficulty of defining which pressure has actually

been measured in a situation in which the pressure varies sharp-

ly within a very narrow region. Thus data interpretation and

extrapolation are often associated with pressure measurements'
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This uncertainty must be remembered whether the agreement be-

tween theoretical and experimental pressures is good or not good.

Gaseous Explosives:

The first seven columns of Table I are from Lewis and yon

3
Elbe and give theoretical and experimental data for various gas-

eous mixtures° The theoretical data of Lewis and yon Elbe (Col-

umns 2, 3, 4, 6 and 7) were calculated with the frozen Hugoniot

(equilibrium composition) C-J model which will be reconsidered

later. Taking the experimental detonation velocities of Column

5 and assuming that the detonation velocity does not change if

is changed and _ is kept constant, one can calculate the de-

tonation pressure, density and partical velocity by Equations ii

through 14. The detonation pressures thus calculated are given

in Column 8. The detonation pressures measured by Gordon 4 mix-

tures number i, 3, 4) and by Campbell, Littler, Whitworth 5 (mix-

ture number i) are given in Column 9. It can be seen that the

envelope method seems to give results at least as good as the

C-J method used by Lewis and yon Elbe.

Solid Explosives:

The first 6 columns of Table II are from Dremin 6 et al and

give the measured values of the detonation variables for TNT and

RDX and for various loading density. The detonation velocity

w_ measured by the ionization method (Column 3). The detona-

tion pressure was deduced by studying the transmission of the

detonation shock into various metals (Column 5). The detonation

particle velocity was then calculated (Column 4). The detona-
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tion particle velocity was also deduced by a second method in

which the reaction products displace a thin aluminum or copper

U-shaped obstacle, and the motion of the obstacle in turn pro-

duces an induced electromotive force that is monitored and

studied (Column 6). By this electromagnetic method the sound

speed in the reaction products was also deduced. Linear curve

fits of the measured detonation velocities (Column 3) were ob-

tained (see Fig. 1 and Column 7),and using Equations 19 through

22 the detonation variables were computed and are given in Col-

umns 8, 9, and i0. In Column ii the detonation velocities of TNT

7
measured by MacDougall et al, are also given (see also Fig. I)

and the corresponding detonation pressures calculated by the en-

velope method are given in Column 12. The detonation pressure

calculated by the envelope method is somewhat higher than the

one measured by Dremin, et al. However, the difference is not

too large particularly in view of the fact that the experimental

pressure data cannot be taken as absolutely correct. Also, the

linear curve fitting of th_ ve]ocity data might be a bit arbi-

trary and the derivative of the curve fit appears in Equation

7. Thus the difference between the detonation velocity meas-

ured by Dremin, et al and by MacDougall, et al (Columns 7 and

Ii) is small,yet it has its bearing on the computation of the

detonation pressure by the envelope method (Columns 8 and 12).

It might be worth noting that Dremin, et al, state that

"the Hugoniot curve in the vicinity of the C-J point may be ap-

proximated, independently of the equation of state of the ex-
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plosion products, by the power function _ _ = A in which A and

are constants. For TNT_ 2.8; for RDX it is _ 2.6." Thus

they must have made the same mistake that Zel'devich and Kompaneets

had made and that this author had made as well in an earlier version

of this section. The mistake in the earlier version of this sec-

tion was caught by Dr. L. Rudlin and Mr. M. Lurzky of the U. S.

Naval Ordnance Laboratory (White Oak, Md.) who kindly advised

this author of its presence. The

accompanying skecth serves to cla-

rify the point. For a given

and _ (or _ = loading density)

the energy equation (Eq. 3) de-

fines a curve in the _ , _ plane

which is called the Hugoniot

curve. For the same _ , _ there

is one Rayleigh line which is tan-

gent to the Hugoniot curve and the

point of tangency is the C-J point.

As _ varies a family of Hugoniot

curves is obtained. The corre-

sponding C-J points will define a

\
\

\

new curve which can be called the locus of the C-J points. At the

same time the Rayleigh lines will generate by envelope a third

curve which has already been called the envelope. In general

there is no reason to expect that for a given explosive and

these three curves coincide. They would coincide if the Hugoniot

curves collapsed into one single curve for all _ 's However,
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there is no way of using Dremin's measurements or any measure-

ments to conclude that the Hugoniot curves indeed collapse into

a single one without explicit consideration of the energy equa-

tion and in particular of the terms • =e(_,_) and _e= o(#,_ )

which in turn require the knowledge of the caloric equation of

state of the products and of the chemistry of the process. The

measurements of Dremin, et al, are sufficient to determine the

locus of the C-J points (if one assumes that the pressure they

measured is the C-J pressure). Indeed, having #-_ (_.) and

_= _r (_), Equation 4 defines _ = _ (_) so that a # =_ (_)

relation can be obtained° Also Dremin's [/ =Dr(_) is sufficient

to determine the envelope of the Rayleigh !_nes as it has already

been seen (these two curves would have coincided if _ =# ( _ )

calculated by the envelope approach had coincided exactly with

the one measured by Dremin, et al). However, the data of Dremin

cannot be used in the Hugoniot tangency condition

,,o
to obtain some Hugoniot curve as they seem to have done. Indeed

they state that their measurements show that _/_ is approximately

constant and equal to 3.8 for TNT for all _'s (actually it is

between 3.79 and 3.95).

%r i
k

Then they define the "Hugoniot" index

(29)

From mass conservation it then follows that
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_ro /h+l

v. ,It, (30)

At this point they must have eliminated M_ from Equation 28 thus

obtaining

4£
(31)

Upon integration, this yields the equation of what they call

the "Hugoniot line"

(32)

The error here is in having used Equation 28 for varying _ in

the attempt to find some Hugoniot curve. This equation expresses

the original Chapmann condition of tangency to the Hugoniot curve

for a given _ , _o o Actually what Dremin, et al, have done is

to find another envelope (different from the envelope of the

Rayleigh lines). This envelope satisfies the condition that

the tangent to each of _ts points qoes through the point _ ,_

and is such that at the tangency point _=_/(m+l). However,

the detonation velocity associated with this envelope is no

longer of the form _= _._/_ . Now the detonation velocity is

(from Equation 4 using Equations 30 and 32)

A _

= -tI11_ 1_.,) (33)

which further shows that if _= 3 then Equation

and Equation 33 gives _ I /_ o

30 gives _B _/4

and one finds again the Zel'dovich-

Kompaneets case.
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It is by now clear that the various methods to calculate

the detonation variables which have been discussed so far, are

not equivalent to the C-J method and cannot be related to it in

any obvious manner. It is nevertheless interesting to see how

they compare with the various C-J models. In the next section

a quick review of the C-J models is given with the purpose of

comparing the models when possible, to the Rayleigh lines envelope

method.

2.4 Review of C-J Models

Chapman (1889, sketch i) sug-

gested that the actual detonation

velocity is the smallest of the ve-

locities satisfying Equations I, 2

and 3. For a given ,=,(_,_ ,_%_R{_

the energy equation defines a curve

in the _, _ plane called the

Hugoniot curve. For a given _ ,_

and for various _Y , Equation 4

defines a family of straight lines,

in the same plane, called Rayleigh

lines. The minimum V satisfying

the conservation equations is that

C_O= CJON%T C_L£ %;LAI _ _-2

ro_. col'!Pt.l 116

C_ BUST,0 _/_

\

.--LF

for which the corresponding Ray-

leigh line is tangent to the Hugoniot curve. The point of tan-

gency is called the Chapman-Jouget (C - J) point. Jouguet cal-

culated the detonation velocity of several gaseous mixtures,
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using the minimum detonation velocity condition (C-J condition)

_0 for the case of complete combustion of the re-and computing

actants (no dissociation). The Hugoniot curve is then for

_0= is called a frozen Hugoniot curve sinceconstant and it

it corresponds to different solutions of the energy equation for

the fixed complete composition for which _ • is evaluated. The

detonation velocities calculated by Jouguet were in good agree-

ment with the experimentally measured ones. Since dissociation

is known to occur and to influence appreciably the calculation

of detonation velocities, the explanation for the good results

obtained by Jouguet is due to the fact that he used "specific

heats calculated from measurements made by exploding gases in

closed vessels. In such experiments dissociation certainly oc-

curred, but in analyzing the results of such experiments no dis-

sociation was allowed for': 8 Thus dissociation was included with-

out realizing it. It can be shown 9 that in this model, the tan-

gency condition is equivalent to setting _= _+Q_ which means

that at the distdnce from the __A__o front at "_ _ _ T ....

dition is verified, the velocity is sonic with respect to the

front and the speed of sound to be considered is the frozen speed

of sound (Q_). It is instructive to apply this C-J approach to

a specific problem. Thus consider the case of the gaseous mix-

ture (2H 2 + 02 ) + 4H 2. The products of complete combustion

are 2H20 + 4H 2. The heat released by the complete combustion

10.82 1010erg/g. The equations to be used are

(Y-J3,) z (34)
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m _w_

m _--

(35)

(36)

The first of the above equations is the energy equation (where

the reference temperature is 0°K). The products are assumed to

be thermally perfect. If the products are assumed to be also

calorically perfect then _ =_ . Otherwise _ = 1.4, y = 1.24

(expecting the products to be at approximately 3000°K) and _=

1.3 where an average _ is taken for the computation of the in-

ternal energy of the reaction product to avoid the integration,

from the reference to the final temperature, which otherwise

would be necessary° The second equation is again Equation 4

and the third equation is the C-J tangency condition written in

its form_ = _eG@ and after having made use of mass and momen-

tum conservation equations. For a given _ , _ the above three

equations contain three unknowns _ , _,_ so that, in general the

detonation velocity thus calculated will be a function of _e

(for a fixed _ ). The dependence _ = _(_) can be estimated

from the following considerations. If one neglects _ with re-

spect to _ ( _ can be expected to be about 6% of _ ) one finds

-- (371

(38)

(39)
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If one further neglects _ /( ro I ) with respect to _o- one

finds that _ is independent of _ and _0 • For the mixture

under consideration (and assuming _. = 1 At. TO = 293°K),

_0 fo /(_-_ ) = .94 1010erg/g which is about 8.6% of _0 (Typ-

ically _0 _• /( _'.-I ) is about i_/0 of _o thus neglecting it brings

about approximately a I_/0 error in # and a 5% in {2 ). For prac-

tical calculations _ is often used instead of _ thus finding 2

": }' "°/("_") (4o_

t,: v'/,.(,.)o _f (_-')/_'o (4_)

v : [, f°(_'-,.)/' (,,_

And in so doing the term (Z]F-(_-I))/Z(_'_I ) (_-/) = 1.62 is re-

placed by I/2(;-! ) = 2.08 and another 22% error is introduced.

Both the detonation variables calculated by Equations 37, 38, 39

and those calculated by Equations 40, 41 and 42 are given in

Table III and the differences cannot be considered negligible.

The s__me v_ab!es c_l_ulated by o_ber versions of the C-J

models will presently be considered.

The above equations are simple enough so that one can il-

lustrate the difference between the detonation pressure and spe-

cific volume calculated by this first C-J model and those cal-

culated by the envelope method for the case in which the same

detonation velocity is used in both cases (_=_= constant).

Thus comparing Equation 12 with Equation 37 one sees that the

detonation specific volume calculated by the envelope method is
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|

I

(_÷I)/2)" times smaller than that given by this C-J model while

comparing Equation 13 with Equation 38 one sees that the detona-

tion pressure is (_+;)/2 times larger. Since for gaseous ex-

plosives _ -- 1.25, the envelope method will give a I_/o smaller r

and a 12.5% larger _ than this C-J model. A more elaborate

C-J model, which will be examined shortly, will tend to give

lower 'J" and higher # thus further reducing the difference

between the two methods.

Lewis (1930, sketch 2) recalculated detonation velocities

of gaseous mixtures using _0= const but corresponding to its

equilibrium value. Since the composition is still constant along

the Hugoniot line (even though now it is the equilibrium com-

position rather than the complete combustion composition), the

tangency condition is still

exactly equivalent to setting

_= _+%. In fact, this is

the way Lewis applied the C-J

condition when he set _ = _/T

which shows that _ is the

frozen speed of sound in the

detonation products. Lewis

used correct specific heats

and his detonation veloci-

ties again agreed well with

3
the measured ones (except

for highly diluted mix-

_ F_O_6M Huc_Otu_oF C_£VE
CO_FuS _10_)

F/zo%eN C-_"

b _ _TC _ _. Po, u'o

tures).
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A model for the structure

of the detonation wave was then

suggested by Zel'dovich, yon

Neumann and Doting (ZND Model

1940, Sketch 3). According to

this model a detonation wave is

actually made up of an adiabatic

shock, followed by a deflagration

then followed by a rarefaction.

The deflagration is stationary

with respect to the adiabatic

shock front. Within the deflag-
5_ETc_

ration zone the reaction proceeds controlled by chemical kinetics

and various states of completion are identified by the quantity_,

which takes the value of 1 at that distance from the front at

which the reaction is complete (C-J plane). In the formulation

i0
of yon Neumann , within the deflagration zone, "a unit mass con-

tains % parts of burnt gas; _-] part of _ntact explosive." One

is still free to choose that the _ parts of burnt gas have reached

a complete combustion state and have given out the complete com-

bustion heat of reaction (no dissociation) or that they have

reached their equilibrium state and given out the corresponding

equilibrium heat of reaction. Gordon 4 calculated the intermediate

and the final frozen Hugoniot curve for H2-Air and using (prob-

ably) a succession of equilibrium states for the _, parts of

burnt gas. The important thing is that this study of the struc-

ture of the detonation wave did not alter the computation of the

quantites at the C-J point. In this study, the presence of the
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rarefaction wave is not considered. Instead it is stated that

the combustion goes to completion at some distance behind the front.

The question of whether com- P

bustion goes to completion and what

it is meant by it was investigated

by Brinkleyl_ Kirkwood and Wood 12,

(1953, Sketch 4) by studying the

interaction between the deflagration

and the rarefaction waves. By im-

posing the condition that the char-

acteristics from the two regions

should join smoothly, Kirkwood and

Wood concluded that there must ex-

ist a plane on which chemical equi-

librium is reached and that on this

[Q _;ILl 8_iDH 14U_ O_IOT t'.U@_

..... to(. )

\

plane the proper condition to apply is_ = M÷O_ (forzen C-J point),

thus confirming the consistancy of Lewis calculations. However,

w_ 13 _,,_,_n_1_, _n_ _ n_o_z_n11_ _nn_lusion and stated that

on the plane on which chemical equilibrium is reached the proper

condition to apply is _ = _$_ (equilibrium C-J point). Indeed

it would appear 9 that if one uses the equilibrium Hugoniot curve,

the original tangency condition is equibalent to setting _ = _+Ge

where _ is the equilibrium speed of sound. If this model is correct,

the calculations of Lewis are not accurate. From the examination

of Sketch 4, it would appear that the various definitions of the

C-J condition should lead to practically identical shock velocities

but may lead to quite different detonation pressures and densities.

This is due to the fact that the slope of the Rayleigh line should
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not be modified appreciably (and the detonation velocity is pro-

portional to its square root), but the tangency point may shift

considerably (see Sketch 4). This author then decided to eval-

uate the difference between the various approaches for the gas-

eous mixture: (2H2 + 02) + 4H2 ( _o = 1 At.; T O = 293°K).

This is one of the mixtures studied by Lewis and Friauf (see

Table i) and the detonation velocity calculated by them ( _ =

3627 m/sec; _ = 15.97 At.) was somewhat higher than the

measured one (3527 m/sec). Lewis and Friauf, as previously

stated (Sketch 2), used, as C-J condition, the tangency condition

to the frozen, equilibrium Hugoniot curve. Since the condition

of tangency to the equilibrium Hugoniot curve should yield a

somewhat lower detonation velocity (Sketch 4), it was hoped that

the detonation velocity thus calculated might have been in better

agreement with the experimental one. The products considered

were the same as those considered by Lewis and Friauf (H20 , H2,

02, OH, H). The computation proceeds as follows. The equilib-

with the energy conservation equation (Equation _ and the equa-

tion of state of the products (perfect gases) for a specific

value of _. This determines _', • , _', T and the equilibrium

composition, and obtains one point of the Hugoniot equilibrium

curve (see Fig. 2). The process is repeated for several values

of _ thus defining the Hugoniot equilibrium curve. For a given

point of this curve the composition is frozen ( _o = const) and

corresponding frozen, equilibrium Hugoniot curves are calculated.

Two tangents can then be drawn: i) to the equilibrium Hugoniot

curve, thus obtaining @ = 17 At., _" = 2100 cm3/g, _ = 3680 m/sec;

2) to that frozen Hugoniot line whose tangency point is on the
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equilibrium Hugoniot line thus obtaining p = 16 At., _ = 2210

cm3/g, _ = 3699 m/sec (Lewis and Friauf reported # = 15.97 At.,

= 2155 cm3/g, _ = 3627 m/sec). These results are summarized

in Table III.

On the basis of this computation one can make the following

observations:

a) The tangency to the frozen Hugoniot curve (for

equilibrium composition) should have yielded ex-

actly the results of Lewis and Friauf but did not

do so. In the present calculation, JANAF (1960)

values for the specific heats of the various sub-

stances and for the equilibrium constants were

used and computations made on a digital computer.

Experience shows that this kind of equilibrium

computations are sensitive to the above quan-

tities which in turn have been somewhat im-

proved over the years. Thus the difference

could be accounted for by just the differences

in the thermodynamic data used. Henc% the per-

cent concentrations of OH and H reported by

Lewis and Friauf are 1.2 and 3.0 while, with

their _ and _', this author obtains 0.5 and

2.94 respectively, thus indicating some dif-

ference in the equilibrium constants. Notice

that the amount of dissociation is very small.

b) The two definitions of the C-J point yielded

detonation velocities differences of only

.516% but detonation pressure differences of
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5.8% and detonation specific volume differences

of 5.2%. Notice that these differences are for

a case in which dissociation is very small. Had

the dissociation been higher, greater differences

would have been found. The influence of the dis-

sociation is shown by its influence on _0 (see

Fig. 3). In spite of the small dissociation the

changes of _0 are not negligible.

c) Measurements of shock velocities will not resolve

the problem of which of the two definitions is more

accurate.

d) The fact that neither of the two approaches has

yielded the measured detonation velocity sug-

gests that something is still missing in the C-J

model for the detonation process even for the

simpler case of gaseous mixtures.

Wanting to look at the detonation process within the frame-

wnrk of the C-J model, one col lld formulate the following thoughts,

For the mixture under consideration, one must assume that equi-

librium was not reached and that some of the mixture had not re-

acted, thus casting some doubts on the assertion that an equi-

librium composition is reached before the starting of the rare-

fraction wave. It could be a case of what are called "path-

ological" detonations whereby the Hugoniot curves representing

the intermediate stages of the deflagration (see Sketch 3) in-

tersect each other. In this case, according to yon Neumann I0
#

they should form an envelope and the proper C-J condition is
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not that of tangency to the _ = 1 Hugoniot curve, but rather

that of tangency to this envelope. But then, still according

to yon Neumann, the "pathological" detonation velocity should

be higher than the normal one while the measured one is actual-

ly lower. It could also be that the current model of the nor-

mal detonation process is too strict. In summary this model

calls for an adiabatic shock front followed by a deflagration

which is stationary with respect to the shock front. The de-

flagration merges with the rarefaction wave and at the merging

point (C-J point) chemical equilibrium, is reached and Lr = _÷ Qe

is satisfied (the condition _ = _+_( is here equivalent to

the condition of tangency to the Hugoniot equilibrium curve9).

It would seem that, for the C-J point to be stable, the condi-

tion should be _ = _÷_ , where _ is the actual speed of

sound which is greater than Q_ and smaller than a_ (the dif-

ference between _ and _ being as high as I_). It would

seem that, if at the C-J point _ = k+ _, then a rarefaction

wave would overtake the front s _ it would m_ve after it at

the speed %& + _ which is greater than _÷_e • One would

then notice that the condition _ = _+_ is sufficient to de-

termine the detonation problem. It does not require any other

restraint like that of chemical equilibrium. There seems to be

no need of distinguishing between deflagration and rarefaction

waves. There would be a stationary reactive region (up to the

point at which _ = _eL ) followed by a nonstationary one.

For a given mixture, the existence of a stable detonation ve-

locity would simply imply that at some distance after the front
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the condition _ = u,_ is met. In principle, starting from a point

after the adiabatic shock front one would integrate a set of Ist

order O.D.E. representing the reaction kinetics together with the

Rankine-Hugoniot equations (Equations i, 2, 3) and the equation

of state to calculate composition and all other variables as

functions of the distance from the shock front. One would have

to start with guessing _ (so that the initial conditions for

the O.D. equations became known) and calculate /L and _ at each

distance from the front° If the condition TJ = u÷_ is nowhere

satisfied one would change _ and repeat the process (for the

H2, 02 system such calculations might be possible since some in-

formation is available about the corresponding reaction mechanism

and reaction rate constants). This C-J model does not lead to a

meaningful graphical description in the _ , v" plant since the

C-J point would not in general coincide with any tangency con-

dition. It would be that point of the Rayleigh line which sat-

isfied the energy equation but at which the Rayleigh line is not

necessarily tangent to either frozen of equi!ibri1_ Hugoniot

curves. This model could be tested by studying the effects of

additives on the detonation velocity of a mixture whose products

do not seem to reach equilibrium composition (such as (2H2+O2)+

4H2). The additives would change the relative concentration of

the products, thus altering the conditions under which _ = M+_

and consequently the value of the detonation velocity (in general

the detonation velocity of TNT, with inert additives, is found to

be equal to the detonation velocity of TNT without additives but

at a correspondingly lower loading density). However, Dremin re-
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ports that the addition of SiO 2 (15% by weight) increases the

detonation velocity quite strongly at high loading density).

The above computations would be complex and in light of the

more recent knowledge of the structure of the detonation front

perhaps not justifiable.

One can thus conclude this section by simply noticing that

there are various modifications of the basic C-J model and that

they lead to appreciably different results. None of them can be

defined consistent with recent knowledge of the detonation front

structure and all of them give reasonable estimates of the de-

tonation variables. The Rayleigh line envelope method seems to

give just as good an estimate of these variables and for its

simplicity might be of practical use. The results of Table III

support this conclusion.

2.5 On the Equation of State of the Products of Solid Explosives

The problem of the equation of state of the products of

solid explosives is still largely unresolved. In "conventional"

studies of the detonation of solid explosives, one assumes some

equation of state (the ones this author is aware of can all be

related to the Van Der Waal's equation) for the products which

contains some arbitrary constants. The complete set of equations

with some version of the C-J model ( _0 is taken to be constant

almost universally, i,e., frozen C-J models) is then solved for

various loading densities. The detonation velocity _ =[_ ( _e )

thus calculated is compared with the measured one and the arbi-

trary constants are so adjusted as to bring about agreement be-

tween the calculated and the measured _ = _( _ ). In the "direct"
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approach on the contrary, one uses all the information that is

available and tries to learn as much as possible about the equa-

tion of state with a minimum number of assumptions. Thus, the

envelope method shows that _/_o = K where K is very close to

being constant over the range of interest of _ 's ( M = .7 + .01

for TNT and .695 + .0075 for RDX, see Table II). One might pre-

fer to take _/ U'0 = K as an experimental result obtained by

Dremin, et al, (in this case K = .736 for TNT and .723 for RDX).
8

Either way, one can write the energy equation as follows

(43)

Next two major assumptions are made. The first one is that the

reaction products are in chemical equilibrium in which case

(44)

The second one is that eo+_ 0 = const as _o varies. Both as-

sumptions are continuously made in the trade, but it is anything

•,._ _.- _A__ _ _, -,,_4 _ Furthermore, 4_ _ __

ventional approach these assumptions are made on top of other

assumptions which are here not necessary. The constancy of _e

will briefly be discussed later. With these two assumptions,

one can eliminate _ between Equations 43 and 44 (where • and

are seen as functions of _ and T ) thus obtaining

-Xzl / / (45)

Notice that no restriction has been imposed on • = • ( _, T). The

general solution of this first order linear P.DoE. for _ =#(_,T)
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can be written in several equiva{ent forms among which

F T ,.,. ,; ,,,..l- =o (46)

Where F is any arbitrary function of its arguments. The equa-

tion of state of the products must satisfy the condition f= 0

which was derived from experimental data and the above two as-

sumptions. Here one has a good example of the advantages that

the direct method offers in some problems. Using the experimental

fact that (/_0 = constant, an expression was derived that the

equation of state must satisfy thus getting the most out of the

experimental data (Maximum Information). It was necessary to

solve a simple P.D.E. versus the complications of conventional

calculations (Mathematical Simplification). This was possible

since only two of the five equations describing the problems

were solved (Set Splitting). It was not necessary to require the

validity of the C-J model and other assumptions which usually are

made in the conventional approach (Assumption Splitting). Still

twn h_4_ _11mptions were madei but their validity could not be

checked separately by additional experimental data. One could

now study Equation 46 for various T =T(_) or for the various

equations of state which have been proposed and experience shows

that such a study would be fruitful (Maximum Information). A

similar study was performed for the problem of steady combustion

of the LOX/ethanol system and the results are given in Section

3.6. Going back to Equation 46, the function f (and therefore

the equation of state) cannot be determined without further ex-

perimental data or assumptions. The only condition available
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is that _ be such as to give the _ = _ ( _Q ) and the _ =_ ( fo ),

determined using _ =_( _o ) and given by Equations 20 and 21

respectively, or the experimentally determined _ = (F( _ ) and

=_ (_@) given in Table II. Thus, choosing a particular form

F , one could set
I

for

(47)

whpre 4 is an arbitrary function of its argument. The left

hand side of Equation 47 is a known function of _ (through

Equations 20 and 21). If T = T(_ o ) is measured, one can de-

termine _ , and therefore the missing equation of state• Sim-

ilarly for any selected T= _( _ ), a function _ can be found

which satisfies Equation 47. Which ultimately shows that the

experimental knowledge of _ =_( _ ) ; _ =_ (_) ; _ =_ ( _ ) ;

=_( _ ) give no information at all about T =T ( _ ). This

is because _, _ , _ , _ are essentially dynamic parameters re-

lated to the energy equation (Equation 43) only through the prod-

uct _ As far as this energy ..... _4_, _ _ncernedo the knowl-

edge of _, _ , _, k is used only in as far as it determines

= _ (_) and the function _ =_ (_ r) cannot be completely de-

termined using only one function of the form _ =_ (_). One can

reach the same conclusion also by the following reasoning. De-

tonation pressure, density and particle velocity can be calcu-

lated immediately without using any equation of state for the

explosion products is the envelope method is assumed to be cor-

rect and if the detonation velocity versus the loading density

is given. Conversely, this implies that the same detonation
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pressure, density and particle velocity are calculated with any

form of the equation of state when the same detonation veolcity

versus loading density is used. The envelope method gives re-

sults which are very close to those obtained by the various C-J

models to the point that many authors have taken the two methods

to be equivalent. Thus, if the validity of some C-J models were

assumed (instead of the validity of the envelope method) the con-

clusion would be reached that slightly different detonation pres-

sure, density and particle velocity are calculated by completely

different equations of state when the same detonation velocity

is used. This explains why similar _ =_ (_), f=_ (_), and_k(_)

and completely different T = T(_ ) have been calculated by various

authors using similar U=_(_) and different equations of state

(the calculated temperature is a function of the assumed equation

of state). Thus, according to some authors 15'16 T increases with

(_, T and _ increase) while according to others 14'17'18 T de-

creases with _ . The problem of whether T increases or decreases

is related to the problem of whether _" can be taken to be con-

stant with _ . If the reaction products behave qualitatively

as equilibrium perfect gases and if both _ and T" increase with _

then chances are that the assumption _ constant is not a bad

one. This is so because _o would increase with _ and decrease

with 7" due to the fact that dissociation decreases with _ and

increases with _ .

2.6 Conclusions

The concept of using experimental data to solve basic equa-

tions with a minimum number of assumptions in order to get max-

imum information out of the experimental data has been applied
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to the detonation problem within the frame work of steady, one

dimensional, laminar detonation front. It has been shown that

the knowledge of the detonation velocity versus loading density

is sufficient to determine detonation pressure, density and par-

ticle velocity using only mass and momentum conservation equa-

tions and the envelope assumption. The envelope assumption has

been shown to lead to s!ighly different results than those yielded

by the various versions of the C-J model. The envelope method

gives detonation pressures some i_ higher, and detonation spe-

cific volumes some i_ lower than the simplest of the C-J models.

The difference tends to decrease for more complicated C-J models

and, in any case, the envelope method is simpler than the C-J

models and leads to predictions of the detonation variables which

are in reasonably good agreement with experimental results for

both gaseous and solid explosives. In the process of comparing

the envelope method with the various C-J models, the conclusion

has been reached that the C-J theory seems to have never achieved

a state of self consistancy. After having solved mass and momen-

tum conservation equations, with the envelope assumption, for de-

tonation pressure, density and particle velocity, the energy con-

servation equation was considered with the purpose of gaining

#
some information about the equation of state of the products of

solid explosives. An expression was derived which would give

the equation of state if the detonation temperature were measured.

For that it was found necessary to assume that the energy re-

leased is independent of the loading density and that the prod-

ucts are in chemical equilibrium. The reason for which the de-
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tonation temperature predicted by the various equations of state

is so different while all the other detonation variables are very

similar, was then explained.
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3.0 STEADY COMBUSTION OF THE LOX/ETHANOL SYSTEM

3.1 Introduction to the "Direct" Method of Studying Liquid

Propellants Steady Combustion

In this section, a simple model of steady-state combustion

is first considered for the purpose of pointing out the basic

differences between the "conventional" and the "direct" ap-

proaches. Only generalities are given in this section while

specifics will be discussed in following sections. Thus, the

oxidizer is assumed to vaporize much faster than the fuel and

that part of the engine is considered where only liquid fuel

drops exist. It is further assumed that all drops have initial-

ly the same velocity and radius and that there are no collisions,

break-ups or nucleations. The following equations can then be

written

•- - (Wp -wo,) •w'o M (51)

W0F i_M (52 )

T:T( _',t, x,:)
t, ---_,( I,,,t', _<,)

:7",'('r.T. ×,,,...._:,w',¥,,,,,,,,,,,,,) :o

(54)

(55)

_. ,_z, ... Z

(57)

(58)
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)

D

Where _, _s _, _-_ _ are the combustion gas density, velocity,

pressure, temperature, and latent enthalpy respectively ( _o is

the value of_ at the injector end). M/_ (M/_) is the local liquid

fuel (oxidizer) flux and w0m (_) is its value at z-o (injector

end). _F (_) is the liquid fuel (oxldlzer) drop velocity, _ (_f)

is the injection velocity and _ (kx_) is its component in the

zdirection. _F (_) and _; (¢) are the vaporization energy and

the enthalpy of formation respectively. _6' are the number of

moles of product _ per mole of burned fuel. _ is the local drop

radius, f_ is the specific gravity of the liquid fuel. C_ and_

are the drag coefficient and the Reynold's number respectively

and _ _s _2 _ are coefficients to be defined later. Equations 51,

52, and 53 express mass, momentum and energy conservation, respec-

tively. Equation 54 is the thermal equation of state of the com-

bustion products, and Equation 55 is the caloric equation of state.

_ a of, say, equations are necessarystands for set I which to

relate the amount of vaporized propellants to the variables of

the gas (they are as many as the products of which the gas is assumed

to be made up). Equation 56 states the conservation of the drop

number. Equations 57 and 58 are possible forms of the drag and

vaporization equations for individual drops. If the conditions at

the injector end and basic thermodynamic data are known, these 8 + I

equations contain the following 8 + I unknowns:

T _ w,, , , , ',z Z.1' _, 1,, , , "a *.. X .
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.....I; solve n'_eric =1]yIn the "conventional" approach one wuu_ _

the above system of algebraic-differential equations. This task

in itself would not be easy due to the fact that the above equa-

tions are strongly and sensitively coupled. The equations _L"

which relate some of the gas properties to the amount of pro-

pellant vaporized are highly nonlinear algebraic equations even

for the simplest of all possible assumptions, i.e., the assumption

of instantaneous chemical equilibrium of the reaction products.

After having solved the equations, the results would be compared

with some experimental data by comparing, for example, the cal-

culated loss of static pressure versus z with the measured one.

If the comparison is not completely satisfactory, one would have

to decide which of the main assumptions that went into this model
b

need to be improved. The main assumptions are:

a) Assumption of chemical equilibrium

(or equivalent assumption) going into

the definition of the actual _,'.

b) Assumption of uniform initial drop radius

and velocity.

c) The droplet drag equation.

d) The droplet vaporization equation.

It is seen that, having several important assumptions, it might

be difficult to select the weakest (there are other assumptions

implied by Equations 51 through 58, but they are not as conse-

quential as those above and they will be listed and discussed

in Section 3.2 and 3.3.2).
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In the "direct" approach one would observe that the first

5 + I equations could be solved if any two of the 7 + I unknowns

appearing in them were given, in which case the last three equa-

tions could be dropped. Notice that the knowledge of two param-

eters allows the elimination of three equations (set splitting)

since Equation 56 contains the drop radius which is used in the

last two equations but not in the first 5 + I. Thus, one could

specify _/_ which is contained within known limits in most of

the engine and use d_rectly measurements of static pressure loss

in some experimental engine (Parametrization). He can then solve

only the first 5 + I equations (less equations to solve than in

the "conventional" approach Mathematical Specification). After

having solved his equations he would know all the gas parameters

(Experimental Data Information Optimization) and could check the

validity of his solution by further measurements, say, of the

gas velocity. Should the calculated and measured particle ve-

locity be in disagreement, one would have to decide which of the

main assumptions, which went into the first 5 + I equations, need

to be improved. But only two of the four main assumptions of the

complete set of equations are necessary for the first five equa-

tions (assumptions (a) and (b) ). Thus one can verify the valid-

ity of these first two assumptions even before considering the

remaining two (Assumption Splitting).
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Actually one can go one step further and argue that the

solution of the first 5 + I equations does not change appreciably

if the assumption of uniform initial drop radius and velocity is

removed to allow for a distribution of initial drop radii. Then

the validity of the first 5 + I equations is primarily related to

the validity of the assumption of chemical equilibrium of com-

bustion products. Thus, if a distribution function for the drop

radii is introduced ( _--4(_,t) ) the following steady-state equa-

tions can be written 9

,,- --/;c 5o
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I'*l : . ,]
The first 5 + I of these equations can be written as the previous

ones if one sets

JO Jo I.. '1z

Where
_F, and _PL are then average liquid drop velocities so de-

fined as to give the same local momentum and energy contributions

to the gas that the actual drop do. In general _--_, will be dif-

ferent from _--_i " One can expect _ ' _F, to be equal to the

actual velocities of some drop groups at any given distance from

the injector. Thus, the ratios _,/_ and %1/_. will fall within

the limit of zero to one in most of the engine, since in most of

the engine the velocity of all drop groups will be less than or

equal to the gas velocity. Thus, if the solution of the first 5 + I
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m

equations does not change appreciably for 0 _ k6/_ I and0_%_%/%_l

one can say that the gas variables calculated by those equations

are valid independently of the actual drop distribution function.

Indeed it turns out that the solution is completely insensitive

to the value of _F / _u and not too sensitive to that of_e/14, .

In conclusion then, the "direct" method will give a solution for

the gas variables which is independent of the actual drop drag

and vaporization models and distribution function and dependent

primarily on the assumption of chemical equilibrium of the re-

action products. Thus this assumption can be verified separately.

After having verified this assumption and calculated the gas

variables (Sec. 3.2), one can then proceed to studying drop drag

and vaporization models and distribution functions (Sec. 3.6)

knowing the solution that they must be able to explain and fit.

There is at least one more advantage that the "direct" method

offers. Many mathematical and physical properties of the steady-

state liquid propellant combustion surface while studying the

solution of the incomp]_ _ _ _q,1__ (the first 5 + I

equations). This will be evidenced by the discussions appearing

in Sections 3.3, 3.4 and 3.5 (Maximum Information). Indeed hav-

ing an accurate solution of the incomplete set of equations is

often more valuable than having an inaccurate one of the com-

plete set. With the incomplete solution available more real-

istic assumptions can be made for the study of the complete set

than would have been possible when no information at all was

available.

3.2 Steady State Equations and Their Solution

In this section, the actual steady-state equations which
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were solved are given together with their assumptions. The method

by which they were solved is then briefly explained and the re-

sults of three specific applications are presented• Discussion

of the assumptions, equations and results will be undertaken in

the next section.

The following assumptions are made:

I) The oxidizer is oxygen and the fuel is made up

of carbon, oxygen and hydrogen.

2) The combustion is steady.

3) At the station of interest the flow is one-

dimensional (uniform through the cross-section)

and with no recirculation.

4) The liquid propellants are at their wet bulb

temperatures (but their boiling temperatures

are actually used) and their vaporization is

distributed (actually only the region in which

liquid fuel is present is studied in all but

5) Gaseous fuel and oxidizer react instantaneously

to give equilibrium reaction products.

6) A single average velocity for the liquid phases

( _ ) is used.

7) Heat transfer (to the chamber walls and within

the gas) and friction effects (to the chamber

walls and within the gas) are neglected.

Under the above assumptions the following equations can be

written (See Appendix A):
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(61)

_ : _o-_+_- _ + wo,_,,-gZ (62)

- .,, [ ->_.%_,-_')+(,:.),/_, +_:]
_= f z2TI_,, = z_r/_ (64)

2 = ,_, ( *o,-"_,}/"_ (_-*,, )

rm,,,, = ,m_+ _,= )za.+2,.+)_ (

8

--I)X,O//+Xz (0 "PX3 CO,. +X_O + X_-Oz +Xd; _/z+ _'7 HzO+)rbH(64a)

c+2 _,)

(65)

(66)

y= .Z X,: (67)
f,-I

Xz÷X3 =_ (68)

X,+zX;+ zX7 _-Xs = &
(69)

)_ + Xz +zX3 eX4. +zXs. f X7 = c+2_
(70)

"+ ,.sze=o _,,) _0,,x_- "I=" Z'z (71)

X8

Ix, ]

4.
l.Z oog [o

+ 3 .,o, : o _ g, _ )4
T

Z. 2.
T

#,3Z¢I to

(72)

(73)

(74)

(75)

(76)
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As in the previous section, Equation 61 expresses the mass

conservation between the injector (where _r,M are the injection

flow rates, of fuel and oxidizer respectively, divided by the

engine cross-section, i e. injection fluxes) and any station

at which the fluxes of liquid fuel and oxidizer are W6@ re-

spectively.

Equation 62 expresses the momentum conservation between

the injector and any station. The velocities _w_,@are the axial

components of the corresponding injection velocities.

Equation 63 expresses the energy conservation between the

injector and any station. The reference temperature is TO=298°K.

Notice that the heat of vaporization of the propellants which

are usually included in their heats of formation, when at ambient

pressure and temperature they are in their liquid states• are in

Equation 63 considered explicitly.

Equation 64 is the perfect gas equation of state.

Equation 64a simply defines which product are being con-

sidered.

Equation 65 through 75 express the assumption of chemical

equilibrium of the products. Equation 65 takes into account that

not all the injected propellants are available for the chemical

reaction since part of them are still in their liquid phases.

Thus _ defines the local mixture ratio of the gases and changes

with the distance from the injector.

Equation 66 defines_ which is the weight of the products

per mole of vaporized fuelCoften called the"molecular weight" of

the "equivalent mole" C a H b Oc+2Z).

Equation 67 defines the total number of moles of products
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per mole of vaporized fuel.

Equations 68, 69, and 70 express the conservation of car-

bon, hydrogen and oxygen respectively.

Equations 71 through 75 express the chemical equilibrium

between the indicated products.

Equation 76 dofines the total enthalpy of the products o All

the constants appearing in Equations 71 through 76 either come

directly from "JANAF" tables or are curve fits of data available

there.

Before briefly discussing how the solution of the previous

system was reached, it should be noticed that the previous 16

equations contains 19 unknowns (_,_s WF,W_s _ _c,Y,T,_,_,Xl 8,_ )

if the parameters at the injector end are given (_p,W_j_,,_F,_ _ )

and the fuel is specified (a, b, c). This system, in which gas

dynamics and chemical equilibrium equations are coupled, is not

easy to solve, even numerically. Small variations in the local

mixture ratio (_) bring about large variations in the composition

the static pressure (_) bring about large variations in the gas

velocity (_) (since large variations of loss of static pressure,

_e-_, generally correspond even to small variations of static

pressure). Thus the chances of an iteration scheme to yield

the desired solution from rough guesses for the controlling

parameters, _ and _, are very small. In such cases it is better

to solve the system for fixed values of these controlling pa-

rameters. The first difficulty, however, is in spotting them

out. Having recognized that _ and _ are the controlling pa-
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rameters, the solution was obtained in two steps; the first

step gives an approximate solution and the second refines it.

In the first step _a /Z is neglected in the energy equation

and _ and _2. are eliminated from it using the mass conser-

vation equation and the equation of state. The resulting en-

ergy equation is equal to the'_diabatic flame temperatur4' en-

ergy equation except for the kinetic energy term. This equa-

tion is then solved, together with Equation 66 through 76, for

fixed values of W_, w_land _ . Thus one determines y , T, _ ,

'_...8 and _ . These quantities are rather insensitive to

small changes in _ as in the"adiabatic flame temperature"prob-

lem. The known pressure at the injector end ( _ ) can then be

used. Next the equation of state, and of mass and momentum con-

servations are reconsidered and written as follows:

( wo,-w,.

The values of _ , _ and_/_ are then calculated for selected

values of _ (to which they are very sensitive) using _ and 7"

previously calculated with _ . A set of tables are now avail-

able from which an approximate solution of the given system of

equations can be closely estimated for the specified values of

W F , W_ , and _ . In the second step the entire system of 16

equations in 19 unknowns is solved simultaneously by the New-

ton-Raphson method, using quite accurate guesses from the pre-
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vious tables and for selected values of any three unknowns (gen-

erally W_, _ , _/_u ). In general, then, for a given engine,

any three of the 19 unknowns should be measured to know the val-

ues of all of them. In practice, however, for LOX/hydrocarbon

propellants the region where liquid oxygen is still present is

small in comparison to the entire combustion length and highly

non-uniform so that the previous equations wouldn't be accurate

anyhow. The measurement of two parameters are then enough to

study the region where no liquid oxygen exists (W_= 0). Actually

it will presently be seen that the solution of the given equations

is not too sensitive to the value of _/_ so that the measure-

ment of only one parameter (generally the static pressure _ ) is

sufficient to determine the solution. Indeed much can be learned

without measuring anything but rather by simply studying the para-

metric solution of the previous equations (Section 3.3).

The results of three specific applications of this method

are now shown. The basic engine parameters of the three con-

fig gi _- _v. _**_ _u,._ete -^-_.._-urations are yen _, Table _'" First _ .....

or final, values of the engine parameters were calculated by set-

ting W_=W F = 0 . They are also given in Table IV. These val-

ues were used as reference values (subscript_ for "final value").

Next the static pressure along the combustion chamber was meas-

ured (Figs. 3, 8, 13). Finally the equations were solved for

the region with no liquid oxygen (W_= 0) and for several val-

ues of _/_ . The values of _/_, _/_ , _/_ and WF/_oF for

the three engine configurations are given in Figs. 4, 5, 6 and 7

(first engine configuration), Figs. 9, I0, ii and 12 (second



70

TABLE IV BASIC ENGINE PARAMETERSOF THE THREE
ENGINE CONFIGURATIONSTESTED

I II III

Oxidizer
Fuel

Injector Design

Injector Diameter (inches)

Injection Angle

Static Pressure at Injector
End (psia) 296

Engine Diameter (inches) 3

Injection Oxidizer
Flux (_o6g/sec cm2) 21.9

Injection Fue_ Flux
(Wo F g/see cm ) 9.41

Injection Mixture Ratlo(O/F) 2.33

Injection Equivalence

Ratio (F/O) .895

Injection Oxidizer

Temperature (OK) 98

Injection Fuel

Temperature (OK) 293

Injection Oxidizer

ve_uuity Kcm/_c)

Injection Fuel

Velocity (cm/sec) 1916

Nozzle Entrance Mach

Number .15

LOX LOX LOX

Ethanol Ethanol Ethanol

4X4 Impinging 4X4 Impinging 6X6 Impinging

Like-on-Like Like-on-Like Like-on-Like

Doublets Doublets Doublets

.059 .059 .040

27o45 ' 27°45 , 27o45 '

299

3

18.7

12.9

1.44

1.44

98

293

2511

2637

.158

Complete Combustion (ReFerence) Values of Some Parameters:

Gas Velocity _ (cm/sec) 17,080 19,100

" Density _ (g/cm 3) 1.832 i03 1.658 10 -3

" Temperature Tt (OK) 3290 3174
i

" Molecular

Weight ,,w_ (g/mole) 25.2 21.8

" Ratio of _j

Specific Heats 1.201 1.210

63.8

3

7.85

4.88

1.6

1.3

98

293

1020

966

.314

36,980

3.448 10 -4

3068

22.3

1+211
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engine configuration) and Figs. 14, 15, 16 and 17 (third en-

gine configuration). Similar curves could have been drawn for

the other engine variables. In all cases it can be seen that

a relatively narrow family of curves is obtained for all realis-

tic values of _¢/_ . Thus the measurement of the static pres-

sure and its direct use have been sufficient to determine most

of the engine variables without having assumed anything about

the way the fuel actually vaporizes and burns (no droplet drag

and vaporization model was used). In order to verify the valid-

ity of the method, the particle velocity was also measured by

streak photography at specific distances from the injector in

all three configurations. The measured particle velocities are

given in Figs. 4, 9 and 14 , with their range of scattering

( vertical bars). The agreement is satisfactory. Notice that

further resolution, within the_¢/%L families, could have not

been achieved by streak photography.

3.3 Results And Discussion

In this section, the solution of the steady-state equa-

tions (Equations 61 through 76), for the case in which LOX/

ethanol are the propellants, is discussed. A parametric study

of the system was performed for the region where no liquid ox-

idizer exists and some conclusions were reached without any need

of experimental data and of drop drag, vaporization, and distri-

bution models. Thus the parameters of the study will first be

defined, then the leading assumption of this study will be dis-

cussed. Next, the energy and chemical equilibrium equations will

be considered to conclude that they could have been solved a priori
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to yield something like an equation of state for the combustion

products. Than the momentum equation will be considered and the

influence of the initial momenta of the liquids and of the drag

and vaporization of the drops will be discussed. Finally the

problem of steady-state axial uniformity of the gas properties

will be examined.

3.3.1 Definition Of The Parametric Study

The following parametric study of Equations 61 through 76

was performed. The equations were solved for the LOX and ethanol

propellants. The injector design was kept constant. The only

injector parameters entering into the equations are the number

of orifices their diameters and their injection angles (16, .059"

and 27 ° 45' respectively for both propellants). The pressure at

the injector end ( _ ) was set equal to 150, 300, 600 psia. The

injector fluxes of propellants were varied as to give injector

.

equivalence ratios ( [Q_0 ) of .9, 1,44, 1.9 (where 1.44 cor-

Several parameters are often used to identify the mixture

ratio. It might be helpful to list those which have been

used in this study:

_F
= [V%_-Wf) = moles of vaporized oxidizer per mole of

(%-w,) vaporizedfuel

_S= 3=

EW_ _ _Q£(F/_]___ equivalence ratio.
rich mixtures

= mixture ratio by weight =@_%---_ _I_L___

In general there are injection values of _ and[_ (called

_o, _QMo and equal also to their complete combustion, or

final values) and local values corresponding to the local

gas mixture ratio.

stoichiometric value of _ since: C 2 H5OH + 302-_2CO2+3H20

NOTE: EQR _i for fuel
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responds to maximum c* while .9 (lean mixture) and 1.9 (rich

mixture) give roughly the same c*) and complete combustion

Mach numbers of approximately .15 and .55. The solutions were

obtained for _/%_ = o2 and 1.0. Thus the system of equations

was solved for 3x3x2x2=36 different input parameters. For each

of these 36 cases, 5 computations were made for (_- _ )/(_ -_)

approximately equal to .2, .4, °6, .8 and 1.0. This parameter

gives the loss of static pressure at some distance from the in-

jector ( _ - _) divided by the loss of static pressure correspond-

ing to complete combustion ( _ -_). It simply fixes the local

static pressure since the pressure at the injector end (_) is

part of the input and the complete combustion pressure (_) is

uniquely determined by the overall input.

3.3.2 Discussion Of The Assumptions

Equations 61 through 76 are based on the seven assumptions

given in the previous section. The computations clearly show

that the solution is insensitive to the assumed temperature of

the liquids (assumption 4) and to their kinetic energies (as-

sumption 6). In the conventional approach, the local temperature of

the liquids affects considerably the results of steady-state

computations since it influences the droplet vaporization rate

which, in turn, controls the results of the computations (see

Section 3.6). In the direct approach,however,the drop vapori-

zation rate does not appear, having been substituted with meas-

ured or fixed gas quantities such as ( _ -_)/(_-_). The drop-

let temperature, then, enters only through the energy equation

for the gases where it modifies the amount of heat necessary to
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vaporize the liquid. This is a small fraction of the heat re-

leased by the chemical reaction, and therefore does not influence

appreciably the solution of the equations. Checks on heat trans-

fer and friction effects were made and found to be small (assump-

tion 7). The assumption of no recirculation (assumption 3) is

important. Recirculation can be expected to be active near the

injector, within distances of the order of the distance between

injector units. This region is also non-uniform and probably

contains also liquid oxidizer. A qualitative investigation of

this region is briefly carried out in (Section 3.4). In this

section, however the combustion length is assumed to be consid-

erably longer than the distance between injector units as is

the case for most practical engines as well as for the experi-

mental engine used in this research. Thus, the assumption of

no recirculation is likely to be a good one as far as this study

is concerned. On the other hand, the assumption that gaseous fuel

and oxidizer react instantaneously to give equilibrium reaction

products (assumption 5) is _u important that the validity of

the results of this study depends on it. It can be seen as the

leading assumption of this study. One of the immediate conse-

quences of this assumption is the calculated axial non-uniformity

of the gas properties which will be discussed in the following

pages. To support the validity of this assumption the follow-

ing three evidences can be cited:

i) The current approach has led to the calcula-

tion of gas velocities which were then veri-

fied by streak photography in the three engine

configurations tested (Figs. 4, 9, 14).
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2) The amplitude of a shock moving toward the in-

jector increases markedly while its velocity

does not change appreciably indicating a low-

er speed of sound of the gases as the injector

is approached (axial non-uniformity of the gas

properties).

3) c* measurements yield temperature estimates

close to those calculated in the present study.

In spite of the quoted evidences, the assumption of instantaneous

chemical equilibrium must still be regarded as a working assump-

tion and its validity evaluated case-by-case. One can say that

it seems to be verified for the LOX/ethanol system when the com-

bustion length is considerably longer than the distance between

injector units (Combustion length _ Recirculation length).

3.3.3 The Energy And Chemical Equilibrium Equations

The energy and chemical equilibrium equations can approx-

imately be solved independently of the other equations of the

system. These equations are rewritten below in a form which is

convenient for the present discussion. Gas velocity and density

have been eliminated from the energy equation using mass con-

servation and the equation of state while the kinetic energy of

the liquids has been neglected
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Equations 68 through 70 (chemical species conservation )

Equations 71 through 75 (chemical equilibrium equations)

Where _Fs_,represents the energies needed to warm up the liquids

to their wet bulb temperatures, to vaporize them and to bring the

TO=vapors to the reference temperature 298 ° (see Appendix A).

The gas kinetic energy and ___._ are small quantities within the

energy equation where the balance between the change of latent

enthalpy of the gases and the difference between the heats of

formation of the products and those of the reactants dominates.

If gas kinetic energy and Cp,_ were neglected, the propellant

fluxes would appear only in the variable _ which specifies the

local mixture ratio of the gases. Thus the solution of the above

equations can be expected to depend mostly on _ (or equivalently

on EQR since EQR = 3/g) and on the pressure, as in the"adiabatic

flame temperature"problem. The pressure itself can be expected

to have a minor influence. The above equations determine the

values of _, _, T, _i' Y and _/_ since _/_ = _Ty/_. Thus

these quantities can be expected to depend primarily on EQR for

all values of M{0_g , _ , _4 and _/_ for which the complete set

of equations (Equations 61 through 76) were solved.. This is in-
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deed the case as Figs. 18 and 19 show. T , _, _/f are func-

tions of EQR only within + 5% due primarily to the influence of
u

the pressure. The ratio of specific heats (_), _ = F_/f , the

internal energy of the gases (e), and the heat released by the

chemical reaction (_) are also determined by the solution of

the above equations and therefore are also, approximately, func-

tions of EQR alone. In conclusion _, _, r, _', y, _, _, _,e

and _0can approximately be considered functions of EQR alone

rather than of EQR, W06M , WF,_ and _ . For most conventional

studies this approximation should be both useful and acceptable

since most of the uncertainties are centered around the distri-

bution, motion and vaporization of the drops and a 5% error in

the above gas properties should be quite acceptable. Notice

however that _ , _ and therefore _ still depend on WoF,_ ,

M/F,_ , and _ as well as on EQR. Thus, instead of studying

the complete system of equations, one could have studied the fol-

lowing one which is considerably simpler

where the last equation can be looked at as an equation of state

characteristic of the propellants and valid within a reasonably

wide range of pressures (given in Fig. 19 for the LOX/ethanol

system). A similar approach was followed by Campbell and Chad-

wick 20 . They assumed chemical equilibrium of the reaction prod-
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ucts and read into their computer program tables of "adiabatic

flame temperature" parameters versus pressure, temperature and

mixture ratio. They could have gone one step further and ex-

pressed the above gas properties versus mixture ratio alone.

The error would have been small and the computations consider-

ably simplier. In summary, if the engine configuration is giv-

en its steady-state could be studied by the above three equa-

tions which contain six unknowns: _, _ , WF , W_, # , and _£/_.

Three of them must be measured or specified (generally Wj ,_/%,

_) to obtain solutions for the other three. At this point it

is important to notice that the bulk gas properties which

depend primarily on EQR are very sensitive to it (see

Figs. 18 and 19). In general, EQR will change along the engine

axis and therefore those bulk gas properties which depend on it

can be expected to exhibit axial non-uniformities. The problem

of the axial uniformity of the gas properties will shortly be

reconsidered. In conjunction with the energy equation the fol-

lowing observations are also of interest:

a) The fact that _ , QMhave little influence on

the solution of the equations used in the di-

rect method, means that its results are not

sensitive to the assumption made about the

temperature of the liquids as previously stated.

b) The fact that the temperature drops below real-

istic values when EQR tends to zero implies that

the assumption of chemical equilibrium of the

products together with that of complete vapor-
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c)

ization of the oxidizer and of uniform one-

dimensional flow with no recirculation lead

to unrealistic results near the injector.

For this reason most of the charts presented

in this report originate at some distance from

the injector. In Section 3.4 the region very

close to the injector is studied for one spe-

cific engine configuration in an attempt to get

some qualitative information about this region

which could be important for instability. Pa-

renthetically notice that with the direct ap-

proach the far region of the engine can be

studied without either calculating the near

region or postulating anything about it. If

one had used the conventional approach, he

would have had to start his calculations from

the injector (or at some distance from it but only

parameters at that distanc 20).

In this study the following eight products have

been assumed to be present: OH, CO, CO 2, O, 02 ,

H2, H20, H. Computations show that none of these

products is consistantly negligible for all cases

of the parametric study. It is probably true

that omission of some of the above products

would not have large effects on the bulk gas

properties while simplifying somewhat the compu-
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d)

tations. However, as previously explained, one

could avoid using energy and chemical equilibrium

equations altogether still introducing no more

than a 5% error in the bulk gas properties. This

is then the way to go if one wants to simplify

the computations, rather than that of eliminating

a few products.

In theoretical instability studies, where reason-

able simplifications are necessary, one often sets

o

e = _/2(_-I) where for _ one usually selects its

complete combustion steady-state value. For the

above expression to hold exactly, the gas should

be thermally and calorically perfect. But the com-

position of the actual combustion gas changes ax-

ially and the specific heats change with tempera-

ture. Thus the above expression for e is not

exact. It was previously explained that the ac-

tual i_-_ .._I ..... _ o &/ J =-_ Y a_a _I_u_ v_ _ m

most exclusively on the local mixture ratio of

the gas. Comparing the actual, local value of e

(calculated for the local composition and with

varying heat capacities) with the actual, local

value of _/_(_-/_,one finds that the latter is

some i_ to 2_ larger than the former. If in-

stead of using the local value of _ one used its

complete combustion value the error in the colder

part of the engine would be larger (closer to 25%).
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e)

Most of the difference can be explained by the

variation of the specific heats with temperature.

Using the values of the specific heats (or of a')

relative to the local chamber temperature leads

to overestimating the internal energy since the

specific heats increase as 7- goes from its ref-

erence value to its local chamber values. Thus,

wanting to set e = _/_(_-! ), one should use

for _ a value slightly higher (or for the spe-

cific heats slightly lower) than that correspond-

ing to complete combustion. For the LOX/ethanol

system _ = 1.235 (rather than _ = 1.21) is sug-

gested.

The parametric study shows that only one param-

eter comes close to being axially uniform for all

injection mixture ratios and chamber pressures but

for small chamber Mach numbers. This is the energy

relea -^_ _-- _ chem_l _o_n pot unit volume

of the combustion chamber (_o). The energy

equation can also be written as follows (see

Appendix A)

_L z z -

where: 1- -- _J_OJm'+ Z'_)J

e+ = 4.,e, ,o  Vrn1, . 

In the above energy equation, the right hand side
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represents the energy source for the gases. The

( p_o ) was found to be proportional toquantity

the chamber pressure and roughly independent of

equivalence ratio, particularly if the very high,

unpractical values of EQ@ 0 are excluded (see Fig.

2_. Thus for H_ _r .IS one could set

Iso 68.q7 io3

The exact reason for such a relationship is not

clear. One could notice, however, that as the

nozzle is approached the gas density always de-

creases while the chemical energy released tends

to increase, reflecting more favorable gas mixture

ratios in spite of higher dissociation. One may

also notice that if kinetic energies and vaporization

energies are neg(ected in the above steady-state

energy equation, the chemical heat released goes

into latent enthalpy of _,L_ _

One could then set e = _ /_ ( _- ; ), still being

aware that this expression is itself an approxi-

mate one as explained above, thus finding

which shows that, whenever kinetic energies and

vaporization energies are negligible and e = _/_(_-_),

then the volumetric energy released can be expected

to be uniform. For _ = 1.235 the coefficient of
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f)

would be 5.25. This dependence of the volu-

metric energy released on the chamber pressure,

but not on mixture ratio, might be of some use

in the problem of scaling of rocket engines.

The relationship between steady-state mass and

energy sources is of some interest. The steady-

state is often assumed to be uniform within terms

of the order of the chamber Mach number. In this

model 21, pressure, density and temperature are

axially uniform, and mass source, energy source

and gas velocity gradient are proportional. In

Appendix A, it is shown that the latent stagnation

enthalpy of the gas (e + _/_ + _ /Z) is axially

uniform when the vaporization processes are such

that, at any distance from the injector, equal

fractions of the two propellants have vaporized.

This is a practical example in which the above

iform t dy ............... _ _ ..... .c-^_us s ea --SSdL_ muu_.L wuuJ.u u_ v_cu

(within terms of the order of the chamber Mach

number). In general, however, one of the two

propellants vaporizes more quickly than the other

and an axially non-uniform gas composition occurs.

From this, non-uniformities in the temperature

and in the other parameters of the gas can be ex-

pected to follow. Similarly the energy source

can be expected not to be proportional to the

mass source as a direct consequence of the vary-
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ing mixture ratio of the gas. The non-uniformity

of the gas parameters will be reconsidered in

Section 3.3.5 (for the LOX/ethanol system). Here

the relationship between mass and energy sources

is briefly considered. Thus mass and energy con-

servation equation can be written as follows (Ap-

pendix A)

d

d_

+r,,,, +r, <',,,+
Recalling that the chemical energy released

(Appendix A) is given by

and substituting it into the expression for the

energy source one gets

• _ dx

Calculations show that in the above expression

the leading term is that containing the chemical

energy released ( p_#0 ), whereas the vaporization

energies ( (p_ A)6_) are smaller, even though

not negligible (except in the vicinity of the in-

jector where they are as large as _@ )° Recall-

ing also that the volumetric chemical energy re-
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leased (fy0) was found to be nearly axially

uniform, one concludes that the gas velocity

gradient is roughly proportional to the energy

sources

However energy and mass sources are not pro-

portional

{/Q --

If the density were axially uniform one would

find again the proportionality between mass and

energy sources. Typical axial density profiles

(for the LOX/ethanol system) are given in Figs.

5, i0, 15 and 24 and they are seen to be quite

non-uniform. To evaluate a typical_/_ ratio,

the engine configuration II of Table IV, whosep

and _ are given in (Figs. 9 and i0), is now con-

sidered. First the following dimensionless terms

are introduced in the above equation

thus getting

Toward the end of the combustion region, both nu-

merator and denominator of the right hand side of

the above equation tend to zero. For physical

reasons they will have to be infinitesimal of

the same order so that their ratio is finite.
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Actually the ratio will tend to 1.0 since, for

p_ _ , _/_ _ _ (within the approximations

made to obtain the above relationship). Thus

the departure of the right hand side from 1.0

is the measure of the axial disuniformity of the

_/_ (see Figure 20b). It is difficult toratio

behavior of _/_ directly to the be-relate the

havior of the various gas variables since the

definitions of _ and _ involve the derivatives

of the gas variables rather than the gas variables

themselves. Figure 20b says that the rate at

which energy is added to the gas is, near the in-

jector, lower than the rate at which mass is added.

Soon, however, the situation is reversed and at

some distance from the injector a situation is

reached where the rate of energy released per

unit rate of mass released has a maximum (prob-

ably related to a more favorable gas mixture

ratio). Toward the end of the combustion both

rates decrease and become proportional to each

other (or the dimensionless rates ratio tend to

1.0). A similar trend was exhibited by the en-

gine c_figuration I of Table IV. Before clos-

ing this section it might be worth noting that

the complete combustion value of _0 • as cal-

culated by computer and including dissociation,

was found to be 6.152 1010erg/g while excluding
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dissociation would have been 8.4 1010erg/g- in-

dicating the extent of the role played by dis-

sociation (Configuration II of Table IV).

3.3.4 The Momentum Equation

Two questions about the momentum equation will now be dis-

cussed. The first one is about the momentum exchanged between

the gas and the liquids. The second one is about the importance

of the initial momenta of the liquids. Again only that region

of the engine where no more liquid oxidizer exists is now con-

sidered. The momentum equation then is

The term within parenthesis can also be written as

The first integral is always negative since the flux of liquid

fuel ( _F ) decreases continuously with _ due to the vapori-

zation. This term represents the momentum given by the liquid

to '_c**_ gas, due to _ ....... :-- :^- _ _^ i_ _ m_ .... _

integral is always positive in the region where %_<_. This

term represents the momentum taken by the liquid from the gas

due to the drag on the liquid. A question of some interest is

whether the two effects (vaporization and drag) are of the same

order or one is negligible with respect to the other. If the

effect of drag were smaller than that of vaporization, the term

( W F_ -M_p_xK ) would be negative. The value of this term

(divided by momentum of the gas) vs the loss of static pressure

(divided by the complete combustion static pressure loss) is
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given in Fig. 21 for all the cases of the parametric study.

For each engine configuration, there are two curves corresponding

to _/_= 0.2, 1.0. The actual value of ( WF_-% _F ) will

fall between these two curves. At first glance one would con-

clude that drag and vaporization effects in the momentum equa-

tion of the gas are equally important since (_ -_Xp )

seems to take on both positive and negative values. However, if

the injection velocity is limited to less than, say, 150 ft/sec

( 4572 cm/sec) as in practice is, then most of the engine con-

figurations which gave neutral or negative values of (_p_-W_F)

would be ruled unrealistic. Further, the actual value of %_/_

is likely to be closer to 1.0 than .2 in most of the engine (as

the calculations of Section 3.6 also show). Thus one should

conclude that, in practical cases, the effect of drop drag on

the momentum of the gas is larger than (or at least equal to)

that of the drop vaporization. This is due to fact that the mo-

mentum that the liquid carries into the chamber ( WOF_x_ ) is

usually small, due to low injection velocities, and therefore

the momentum that the vaporized liquid adds to the gas is small.

On the other hand, the momentum taken by the drops from the gas

through the drag is generally high as it is shown by the ten-

dency of _t_ _L rather than staying constant. In Fig. 21

notice also that in the vicinity of the injector, where the loss

of static pressure is still small, the ratio of (_p_-W0_p)

to _ is very high. Thus in this region the proper handling

of the momentum of the liquid becomes important to the accuracy

of the solution, and this brings up the subject of the importance
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of the initial momenta of the liquid.

In the vicinity of the injector the initial momenta of the

liquids are essential to the accurate determination of the steady-

state for all chamber pressures, injection equivalence ratios

and nozzle entrance Mach numbers. If one assumes that _/_= I,

mass and momentum conservation give

Thus the ratio of the local gas velocity to the final gas velocity

(%4/_4) is a linear function of the percent loss of static pres-

sure and intersect and slope are functions of the initial momenta

of the liquids. If the initial momenta of the liquids were ne-

glected one Would obtain

_

In Fig. 22 the results of the parametric study are given. The

above linear dependence is evidenced. It can be seen that the

_ _ _4- ._ °_=_,_u_ from the 45 ° _-_ i-_ I_.,._-_1 .... _ _- .... 1,-,_4-..,_,

is large, particularly near the injector and for high injection

velocities, thus showing the importance of the initial momenta

of the liquids. Notice that one could calculate the local gas

velocity, from measured static pressure data, directly from the

previous linear relationship by just knowing the basic parameters

of the engine if he were to assume that %_/_ = 1 (not even the

assumption of chemical equilibrium of the products would be nec-

essary). The influence of %_/k # 1 is shown in Fig. 22 by

the parametric study. The _/_ 1 results comethe results of
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now from the solution of the complete system of equations and

therefore they are functions, in particular, of the assumption

of chemical equilibrium of the reaction products. Indeed from

mass and momentum conservation one now gets only the following

relationship for _[¢/_ _ 1

And the gas flux (f_) is now to be determined using the complete

set of equations.

3.3.5 Axial Uniformity

The question of steady-state axial uniformity is relevant

to many important theoretical and practical problems such as the

order of the terms in the conservation equations for theoretical

instability studies (Section 3.5), the interactions between liquid

and gas phases (see Section 3.6) and the heat transfer to the

chamber walls. The results which are about to be discussed are

valid for the LOX/ethanol system for subcrltical engine conditions

of practical interest. They are subject to the validity of the

assumption of chemical equilibrium of the combustion gas and of

no recirculation (except in the vicinity of the injector) which

in turn have led to satisfactory results in the three engine con-

figurations tested. They do not depend on any droplet drag, va-

porization or distribution model. The result is that all gas

parameters exhibit some degree of axial non-uniformity. The

trends of the individual parameters are not evident a priori

due to the nonlinear nature of the equations which interrelate

them. Some of the most important parameters are now individually
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considered.

The axial change of static pressure is of _(M;) or

more specifically

Thus for _, .5 the maximum change of _ is 2_ and it is in-

dependent of chamber pressure and mixture ratio.

I" : The axial change of temperature depends strongly on the

injection mixture ratio (Fig. 23). If the injection mixture is

lean, _Q_0 _ _ , the temperature increases uniformally along the

engine starting from a value which could be as much as 5_ lower

than its final one. If the injection mixture is rich ( _Q_ i,

say maximum c* mixture) a higher degree of temperature uniformity

is expected. Near the injector it is still lower but it quickly

reaches a value close to its final one as soon as enough fuel

has vaporized as to make the mixture ratio of the gas close to

stoichiometric. If the mixture were very rich, the temperature

would be low quite ........ the _-= ..... _ ........ _ _-- -_-_

quickly to decrease again before combustion of the liquid fuel

is completed. Such rich mixtures, however, are not practically

used. It is interesting to note that the maximum c* mixture,

is also the one which exhibits the greatest temperature axial

uniformity. Also higher chamber pressure and Mach number favor

temperature uniformity.

: The average molecular weight of the products changes

by as much as 50% as the mixture ratio of the gas varies (Fig. 18).

Notice that, for _ 's of practical interest (say _ 1.44,
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which corresponds to maximum c*) the temperature mostly increases

along the engine while the average molecular weight decreases.

This brings about a strong axial non-uniformity in the density

since F =_/_r and _ decreases as well along the engine._

is practically independent of chamber pressure and Mach number.

: The density, as above indicated, is the quantity which

undergoes the strongest axial disuniformity (Fig. 24). The dens-

ity at the injector can be expected to be at least twice as large

as the complete combustion density, for practical engine config-

urations. Density uniformity is strongly influenced by chamber

pressure with higher pressures bringing about higher uniformity.

Also rich mixtures and lower _ favor density uniformity.

: The ratio of the specific heats is rather uniform

(1.26_ _ 1.2) but the factor (_- i) can be expected to change

by 3_ along the combustion chamber.

: The quantity _ = (T#/_) ½ varies roughly as (I/_)½ (see

Fig. 25) and the variations of p have already been considered.

Notice that the variation v_-= _ _ ,,,_ _.^_ ...._ I_ _ _

of p than to that of T due to the simutaneous variations of /_

( t r)=-- . Notice for example, that _ increases uniformly

along the chamber length for mixture ratios of practical inter-

est, while 7" could actually first increase and then decrease.

The quantity (T_/_) ½ is close to the speed at which an infin-

itesimal perturbation would move (speed of sound) but it does

not necessarily coincide with it due to the reactive nature of _

the medium under consideration and to the presence in it of

mass, momentum and energy sources (see Section 3.5).
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Fig. 25
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p_o : The volumetric energy released is close to uniform

along the engine for mixture ratios of practical interest and

for low chamber Mach numbers. Its value is proportional to the

chamber pressure and roughly independent of the mixture ratio

as already indicated (see Section 3.3.3).

: The specific internal energy of the gas varies roughly

as _/f (f-;) if _ ,_ , and _ are given their local values as pre-

viously indicated. Since both _ and V-I) tend to decrease

along the chamber, the changes of e resemble those of I/_.

3.4 Region With Liquid Oxidizer

The one-dimensional approach to the study of this region is

hardly justifiable, as is the assumption of uniform chemical equi-

librium of the gaseous species. Even accepting the above two

limitations, this region could not be determined with any de-

gree of accuracy since the experimental measurements in this

region show great randomness. The determination of the non-

measured variables by Equations 51 through 76 and by the use of

the measured ones, then becomes a matter of interpretation of

the experimental data. This is most unfortunate since this

region is likely to be important as far as high frequency insta-

bility is concerned. Thus, this region will now be investigated

qualitatively. A number of interesting results will be reached

among which are the following ones:

a) The initial momentum of the liquid should not

be neglected in steady-state calculations.

b) The increase of static pressure in the vicinity

of the injector is produced by the initial mo-
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mentum of the liquid.

c) The point at which the liquid velocity is equal

to the gas velocity (_e =4) is further from the

injector than the point at which the static pres-

sure tops off after increasing (_ = 0).

d) The velocity of the liquid need not necessarily

decrease before increasing.

e) Temperature and static pressure measurements near

the injector help considerably in defining the

local state.

The first engine Configuration of Table I is specifically studied

in this section.

The momentum equation is considered first. If one assumes

that both liquid fuel and liquid oxidizer move at the same ve-

locity (_) and sets _ = _ +& , then he can write the momentum

Static pressure measurements near the injector indicate that the

static pressure first increases a bit before decreasing. In the

first engine configuration, the static pressure reaches a maxi-

mum between 1 and 2 inches from the injector (see Fig. 3). The

first of the above equations shows that as long as the static

pressure increases the liquid must be losing momentum (the first

two terms are positive, the third must be negative). The second
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equation shows that the liquid can be losing momentum while its

velocity is still increasing provided that the vaporization is

sufficiently strong (the first three terms are positive, the

fourth term could be positive or negative and the fifth one is

negative). The third equation shows that as long as the static

pressure is greater than the injector static pressure, the driv-

ing force is provided by the initial momentum of the liquids

(in the first engine configuration, approximately the first 2

inches). In this region the largest terms are the liquid pro-

pellant terms while the gas momentum and the static pressure

difference terms are small. Finally, it should be noted that

the point where _ =_ must occur further away from the injector

than the point at which _ = 0. When _z= I_ the drag term is zero

( _(_ = 0), and ( _%_ )z I_ and ( f¢ 14_ ) 72z cancel each other

out because of mass conservation. Thus the second equation can

be sati _ _1_: _.-F b 4._ _aative; Hence in the first en-
J _-- v_ ..... J

gine configuration the condition _e = I_ must occur further away

from the injector than say 1.5 or 2 inches. The fact that the

velocity of the liquid fuel might actually be different from

that of the liquid oxidizer produces more possibilities and, for

instance, one propellant could slow down after injection while

the other could accelerate. The fact still remains that as long

as the static pressure is greater than the injector static pres-

sure, the driving force is provided by the initial momenta of

the liquids and that at least one of the two _ =%(, _= _4,

distances must be further than the _ = 0 distance. Mass and

energy equations are now considered under the assumption of uni-
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form chemical properties of the gas. This region is character-

ized by low temperature (less than 2400°K). No dissociation

phenomena need then be considered, and all the fuel can be as-

sumed to give CO 2 and H20 products. The energy released per

mole of gaseous fuel is then constant. Equations 66 through 70

involving the chemical species in the gaseous products can now

be greatly simplified

C_ N_ O_ * Z-OL -_ X,COL+ X, O. + X_ H,0

Xi= 0_.

(66a)

(67a)

(68a)

(69a)

(70a)

In the above equations _ , which represents the local m_xgure

ratio of the gaseous components, is the only unknown. _ now

depends on the vaporization of both fuel and oxidizer. If it

is assumed again that both liquid fuel and liquid oxidizer move

at the same average speed, then one can identify the fractions

of liquid fuel and liquid oxidizer by the following parameters

can be written as

_ _t_ l-_ F

Then

(15a)
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The mass conservation and state equations now give

T m

(lla)

(14a)

It could be shown that after some algebra the energy equation re-

duces to

The above equation includes the effects of the vaporization en-

now as important as the mechanical work (_/_). Theergy en-

ergy equation need not be simplified and could be handled by

computer as it was done in the previous section for the region

with no liquid oxidizer. Here, however, one is after more qual-

itative arguments and then it is useful to solve the approximate

system of equations in closed form to discuss its behavior.

Even so the results from the above equations match the results

from the more accurate equations given in Section 3.2 if _f= 0

(no liquid oxidizer) and for temperatures less than 2400°K, and

greater than 2000°K. Using Equations 61a, 63a and 65a the fol-

lowing relation between _ , _j , k is found

If one assumes that the gas velocity varies linearly from the

injector to five inches (where it is known, see Fig. 4) and that

the liquid oxidizer decreases linearly in the same interval (to
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be zero at five inches) one finds the interesting result that

is constant in the interval. By virtue of Equations 63a,

64a, 66a, 67a and 70a, this implies constant gas composition,

density and temperature while by virtue of Equation 65a the

fuel would be vaporizing linearly within the interval (to its

value at five inches). Move specifically one would get (see

Fig. 26)

1'=
T=

,'F:I

-.------,

IZ,&
-3

3.S" Io

zl4o

'" }700o 0_/_,,

0

Assumptions

Results

.73_

However, temperature measurements indicate that the temperature

is not constant in the 0 to 5" region. So close to the injector

at any given distance from it, the temperature is found to vary

._._ _ " _ _-%-I-, __.__ ,:. 7"T.._.......!_,I_....._. -_ j
_...IJ I I.._ J_ k-_ _ j. di9 j_ _ " ; _ _ k.) J. k-il ii_ J- "" -_ I, f_u.t _f a

fuel or an oxidizer orifice, or in between (this merely shows

the inaccuracy of the simple one-dimensionality assumption in

this region). At i' the temperature measured in the first en-

gine configuration was about 2000°F between oxygen and ethanol

orificies and about 1200°F in front of the ethanol orifice. At

3" the measured temperatures are roughly 3800°F and 1800°F re-

spectively. Wishing to carry the one-dimensional analysis fur-

ther, the temperatures of 1200°K and 1700°K and i" and 3" re-

spectively were used. Further assuming that the fraction of

liquid fuel decays linearly in the interval from 0" to 5" (from

1 at the injector to .735 at 5") one can then calculate the
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other parameters, thus finding:

_Z = I

Z- - zs"

r

d_ -- 9+7

= & o3

% I+zo

(+../..) = ,o,o

II
3

17o0

/7

.841

• |gO

4_8o

3ooo

Where the average velocity of the liquids, _ , was calculated

by using the momentum equation and the measured static pressure

(Fig. 26). The above results could be used as such although they

lead to a linear variation of gas particle velocity in the region

0" to 5" and to a We=_ distance of 1.5" more or less coinciding

with the _x = 0 distance (see Fig. 3). Experiments show that the

gas velocity is not quite linear in the region 0" to 5" and one

++:o::_.._ ++.._!__h_....point 12.c=L¢ to b_ a b_t further awav_ from the in-

jector than the point _x = O. Both points can be taken i£,to ac-

count by abolishing the assumption that the fraction of liquid

fuel decays linearly in the interval 0" to 5". Thus assuming

that at i", _ = .98 one finds

-3

At 1" T = I?.00_' ,:Z_ _= 6.34 I0 _----_"3 _+'p=.98 _11= . d',_"

The above results lead to the third graph of Fig. 26 . As

previously stated, these results are only qualitative. However,

since they are derived by the direct use of experimental data

(temperature, static pressure, particle velocity) and since

they respect basic equations they can be recognized to have some

indicative value.
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Figure26
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3.5 Perturbation of the Steady State

It is desired to find a perturbation scheme, for the con-

set _tion equations, consistent with the steady state axial non-

uniformities discussed in previous sections and to evaluate the

effect of the steady state axial disuniformity on the frequency

of a small periodic perturbation. For simplicity, the internal

energy is replaced by _/_(_-,) with _= const, but its value is

assumed to have been properly selected as to minimize the error

involved in the substitution. The unsteady conservation equa-

tions given in Appendix A are then considered and the following

dimensionless quantities are introduced

with _17 _-Z_#/f_ .

If il is a quantity of _#Ii) , the following ordering for the

steady state quantities follows from what has been learned about
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the steady state of the LOX/ethanol system (Sec. 3.3)

fo(')
{o) _

JP,#.

_(*) = I

0)

, _ _,C*)+...

(x) o + 6 _'; (f) _ ""
6# = _#o

z .(1)

+ o + • _(_,),...

.o (')

o . oL')

r, fJ--_,p

a;,_o(*)

where, for any given chamber pressure and injection mixture

ratio the axial variations of 2_#, are of order i. Also &
0

is different from zero only near the injector; _M are con-

stants; A_# are independent of N$ In the above expressions,

the subscript zero stands for "Steady State" and the superscript

The previous ordering

simply eliminates the kinetic energies and introduces a constant

static pressure in the energy equation. The resulting lowest

order equations are consistent with the steady state previously

calculated in the entire engine

r (,)o) (o) o) (P) (u 4
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If one assumes that one of the two propellants vaporized instan-

taneously at the injector, he can then eliminate the correspond-

ing terms from the above equations and introduce its initial

flux, momentum and energy through the boundary conditions at the

injector end. In the case of the Lox/ethanol system, the vapori-

zation length of the fuel is much longer than that of the oxi-

dizer, thus the above assumption seems reasonable and can be

used also to study the perturbation of the steady state. Thus,

if the steady state is subject to an unsteady perturbation of

amplitude 6 , one could modify the previous steady state order-

ing as follows

_(.,0= o +

I_Lz,r =.

E_"r_,_J+ ...
[_"_ + ,_"_c,,_JJ + ...

F _"'C__,07 + ...
L. " -_

(_ [ ,el,) 1t_,,_:)J + "'"

-,., [,¢c,,,,j,,...

Where the subscript 4 refers to the slowly vaporizing propel-

lant. If one further assumes that the derivatives of the quan-

tities are of the same order as the quantities themselves and

retains only the lowest order terms, one then finds
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_ _L_÷ _o o

Z_'' L ".J "9_L _ _ + + 6-z =o

[ .C'/"+ ""/°' "
[ ,.,,'"',,,.,.,., ,.,),,,1

The orderings so far discussed are not unique and may even be

inadequate if more equations, such as those coming from droplet

drag and vaporization models, are added to the previous ones.

They are, however, consistent with the steady-state results of

this study. However, in the ordering for the steady-state per-

turbation it was assumed that the perturbation of the liquid

quantities ( _ , _ _ _f ) are of the same order as the perturba-

tion of the gas quantities. This is simply an assumption un-

related to the steady-state study. In some engines, small per-

turbations are found to grow to full strength shocks in a few

cycles (as in some of the LOX/ethanol engine configurations used

in this study). This would indicate that the sources are strong

and therefore equal orders for the perturbation quantities of

both gas and liquid phases seem reasonable. In other engines the

growth of small perturbations occurs over many cycles indicating

weaker sources (or larger losses) and the assumption that liquid

perturbation quantities are of higher order would seem reasonable.

In this case one could visualize that the inertia of the drops
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prevents them from changing their velocity as much as the velocity

of the gas changes (perturbation of _ of higher order than per-

turbation of _ ). But one could conceive that the perturbation

of the drop mass is still of the same order as the perturbation

of the gas density (perturbation of _ of the same order as per-

turbation of _ ) since the vaporization rate is affected by

both relative velocity and gas properties (pressure). In this

case the lowest order perturbation equations would be

Notice that, in this case. one has mass and energy sources in the

lowest order equations but there is no momentum source. Finally

one could go a step further and assume that also the perturbation

of the drop mass is of higher order. Then with no perturbation

of the liquid quantities, at lowest order, the perturbation of_

and of _0 should be put to higher order too, thus getting

a( ,,J--o

-c"zec') (/,,))+I -o

9J,

(77)

(78)

(79)
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Where the energy equation states that the time rate of increase

of internal energy (/') )and chemical heat addition ( _"_[02 )

within the control volume due to the perturbation is balanced by

the influx of internal energy ( _[e) ) and of additional chemical

heat (_ _o _ ) and by the mechanical work done on the boundary

(_-I) _') ). Thus both the steady state density nonuniformity and

the steady state chemical heat released nonuniformity influence

the propagation of the perturbation. From the previous system

one gets the following P.D.E. for f/t)

fir,, _t,, (,. , =o

Actually _'_) is the heat of formation of the products from which
0

the heats of formation of the reactants should be subtracted to

obtain the chemical heat released. If, considering the approxi-

mations already made, one neglects the latter in comparison to the

former, then ( j, could be considered approximately equal

_,. _h_ _t_l ......................_tpv_1_ri_ _n_rav_ _o_rc_ which was found to

be approximately axially uniform (Sac. 3.3.3). Due to the non-

dimensionalization it then turns out that -_ and the

above equation for _C0} becomes

while for _') one finds: P(°)_(')-5 (')-- O

Putting back the stars on the dimensionless quantities one has

where the assumed constancy of _' is used and it is further set

that the heat of formation of the products goes into latent en-

thalpy of the gas. If one had used _&0. _.0#_ (see Sac. 3.3.3)

he would have found 1.2 instead of _ .
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An earlier analysis led to an equation for 7X/'#)which did

not fully include the effects of the steady-state nonuniformities.

One can write the unsteady conservation equations isolating the

sources (neglecting kinetic energies) as follows

One then finds that the following steady state ordering is con-

sistent with steady state results if _ _ _{_, are proper-
'e ' --0

ly de fined

l,J
p (,? = _ 6,)

_(,,) = o + c ",4"*'(=2, ...

_.(_,_= 1 .s,. o + ,J J,o'"_,e2--- +...
_(1)

qC,)= o + e%C=)+ ...
(t).

I/C_) = o + o -+ E_ (=,.) 4-

,.,) -_ n .,. ,=__<"(x)---t- ...

where the energy source now contains also the heat of formation

of the gas. Going then to the unsteady perturbation, for the

case in which the perturbation of the liquid is assumed to be

of higher order than that of the gas, one would set

t(",H = P/"E_J+ 8 [/vf,,oJ +

_<(,<,_j=o * _ [_<_°c,,J+z,"(,,ej3+...
_(x,¢)= I + • _ /"(,,t)]+ ...

9'(_) = o + o +_,[ _o,<.,.,+ w<,,[,,,)]+ .. .
f c.,u: <, + +
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and upon substitution and using the steady state equations one

would find

./)o(°) ('] (,)

%==0
(80)

where the effect of nonuniform chemical heat released has dis-

appeared. When one assumes that the perturbation of the motion

and of the burning of the liquid is of higher order, one simply

states that the motion and combustion of the liquid proceed as

in the steady state, i.e., there is no additional contribution

from the liquid due to the perturbation of the gas. However,

in steady state the energy added to the gas is not axially uni-

form due to axially nonuniform gas phase mixture ratio. The per-

turbation of this axially nonuniform steady state source is then

felt by the gas even though the liquid adds no extra mass or

,_) ,,_ (o)_ ,8"%(,)
energy contribution. Thus, terms of the form _o [ , _ o

should appear even though perturbations of _ _ _2 are of higher

order.

The above variable-speed-of-sound wave equation was solved

_/o) /;_x)for some typical _ -- to get an idea of the influence of

the steady-state uniformity on the frequency of a periodic

perturbation.

Consider a combustion chamber of length approximately equal

to that of the active combustion zone ( _ ).

solutions, one sets

= II{ ) e

Looking for periodic

Then substituting in the variable coefficient wave equations, one
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gets

V °' _ °

If I)_ / , using the homogeneous boundary conditions one

would get

5/" : A _,_ c.,_ _ : ,,.'rr" ,'a.= i, z ,..

Thus the fundamental frequency would be

_= _F [or in cycles per second _= _ _'_k_=Z-_hL ]

_s
Let _ (_) now vary linearly from the injector to the nozzle

entrance and set the origin of the coordinates at the nozzle

entrance

Z

@

_lz) I

I

i

!

!

Then the equation to be solved is

By setting

v(o)=u(,)= o

the above equation is transformed into Bessel's equation

Hence the desired solution is given by
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Where A, B, _ are still to be determined. Applying the

boundary conditions

+ B

The above system has no trivial solution for A, B only if the

determinant of the coefficients is zero. Expressing Bessel's

functions in forms of Airy's functions (A_")_i' ) the above

condition, after some algebra, leads to the following relation-

ship

Both sides of the above equation are plotted in Fig. 27 and it

is seen that the first eigenvalue of _ is 1.88 hence the funda-

mental dimensionless frequency would be

_= _t Z._+

In contrast, for the uniform steady-state case (_= I ), it was

found to be _ . This represents a 2_ difference in the funda-

mental frequency.

Having the eigenvalue of _ = 2.54 one can express A as a

function of B

_ _ --. IS'17 B

and now the solution becomes ( _= _.E4 )

c,+j (,+

where the amplitude _ is undetermined. The above function is

plotted in Fig. 28. The constantB was so chosen as to give a

maximum amplitude of _{_) equal to 1.0. For comparison, Fig. 28
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gives also the function $_ which would be the solution of

the _)| case. It is seen that the shape of the perturbation

velocity is similar in the two cases (for the fundamental fre-

quency). The two frequencies, however, were shown to be dif-

ferent and nothing can be said about the two amplitudes.

The linear variation of /00) is not a good approximation

of the real steady-state density variation. Indeed the density

varies more strongly near the injector as Fig. 24 shows. An

exponential function is then a more realistic choice for _ (zJ •

With the origin of the coordinates at the injector, the proper

form for _o_) is

=a+8 e

Then the equation to be solved now is

_z e C _s_". _ (_+ )IT= o _'(o)=_(')=o

By setting
C z/_

, _: 4.___

it is found that

- c _ c"

Two solutions are sought of the form

..oThe indicial equation gives S--- -+ and the two solutions

are

_,, 2 ,_!(,. "'"

v (_)o % (-,_c _ ,- ''" ' I_1_(,-_1) (.,-i/_/),.:l "_ _. (I-_ "'"
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The above two solutions are complex and conjugate.

solution would be

V- c,

The general

By choosing the two arbitrary constants Cl, C 2 to be complex

and conjugate, the general solution takes the form:

where _ and _ are the real and imaginary parts of [_Z - Re-

taining only the first terms of the two infinite series (for the

range of interest this approximation can be shown to be accept-

able) one gets

To have non-trivial solutions for A, B, the determinant of their

coefficients must vanish since we have homogeneous boundary con-

.... :Jz
_l_lons on _r at _,=Z_/_ dnd _Z=Z2_ . From tl,i_ uul,uiLiu,,

the relationship is found

c

I;l("

The above relationship determines the eigenvalues of &0 since

a, b, c are known and _=2_. Specializing now to the two ex-

ponential behaviors of _(¢) given in Fig. 29 and looking only for

the fundamental frequency (which is expected to be approximately

), the above relationship simplifies to the following one

%_ __--
ze'J

For the lowest of the two exponential curves of Fig. 29 (._z.=_ I )

one finds for the first eigenvalue _ = 2.86.
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For the highest of the two exponential curves of Fig. 29

= 2._ ) one finds _ = 2.49.

These values of _ are down I_/o and 20% respectively from that

calculated without taking into account the nonuniformity of

the steady state. Having _ one could proceed to determine B

as a function of A

solution for _z _/

However A remains undertimined. The

6J = 2.86 is sketched in Fig. 28. The

constant A was so chosen as to give a maximum amplitude of

V (x) approximately equal to 1.0.

From the three examples of this section it could be con-

cluded that the nonuniformity of the steady state could lower

the fundamental frequency of a small perturbation by as much as

2_/o. The shape of the perturbation velocity is not changed

significantly (in the fundamental frequency).

An alternative, intuitive and simple way of calculating

(Crocco, as an application of the WKBJ method, personal correspond-

ence, and Tsuji 34). Having the following wave equation (/o)= const)

(') l (0 o

Its general solution is known to be _./"J/'_,,_)= _._'¢'_ _)4._(Z-_ 1_/

and --_°)-g_ is the actual constant speed at which the per-

_t0/

turbation propagates. However, if _ is not constant the general

solution of the above equation is not of the form

Nevertheless, intuitively, one could think that the wave is

travelling locally with the speed _2 _'_ and could calculate
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its dimensionless period by

This way one finds the following dimensionless periods ( _f )

and corresponding values of 6_ (in parenthesis the _)s

previously calculated)

-4Z

- i e.. ,.,,: ,.;I (z.4s)

One can see that this simple way of calculating _ gives ex-

cellent results.

The result of this section is of interest in relation to

the frequency of shock-type longitudinal instability. Under

the assumption of uniform chamber temperature, one would expect

the frequency of the oscillating shock to be higher than the

acoustic frequency since a shock wave moves _dSU_L u**_** u**_

speed of sound (e.g., for _L/pl = 1.5 the shock velocity would

be about 1.20 times the speed of sound) and gas velocity effects

cancel out over a cycle. However, hot firings show that the

frequency of the oscillating shock is close to the acoustic fre-

quency. This contradiction disappears if the assumption of

uniform chamber properties is removed. The acoustic frequency

calculated in this section with typical axially nonuniform den-

sity profiles is indeed some 20% smaller than that calculated

with the assumption of axial uniformity. In other words, the

longitudinal shock instability frequency as calculated with the
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speed of sound based upon the temperature for completed

combustion is probably accurate because of the cancelling of

the errors from two inaccurate assumptions.

3.6 Review of Some Droplet Distribution, Dra 9 and

Vaporization Models

In Section 3.2 the variables of the gas and the dimension-

less liquid fuel flux (Wr/Wep) were determined for three

specific Lox/ethanol engine configurations without assuming

anything about the distribution, the drag and the vaporization

of the drops. Static pressure measurements were used instead.

Thus, after having measured some unknowns (first step in the

direct approach) and having calculated most of the others by

basic conservation equation (second step in the direct approach),

one should now investigate some possible models with the purpose

of selecting the model which best fits the already computed

solution (third step in the direct approach). Such an investi-

gation is ......... in _: section.urlu _ L Ld_ll L_I_

The selected main goal of this section must be clearly

spelled out from the very beginning. The main goal was not

that of considering the most complete (and complex) of the

possible models. The main goal was, on the contrary, that of

finding the simples£ schematization which would contain the main

physical elements and lead to reasonably accurate steady-state

calculations. The reason for this choice is that this study was

conceived to aid analytical instability studies where simple,

yet reasonably complete, steady-state models are needed. Thus

a specific engine configuration was selected (configuration II
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of Table IV whose _,k(_, f=2(_] , T=T[_) and WF/_ versus

are given in Figures 9 through 12 and were curve fitted as

indicated in those figures). Quasi-steady droplet drag and

vaporization were assumed. The droplet surface temperature

was taken to be equal to the boiling temperature. The follow-

_ng vaporization rate equations were studied

j_ B_

d-_ =- -- t+.3&
J_ 8_

.(81)

(82)

(83)

a--6
(84)

(85)

-M- . (86)

d_: 8f_

(87)

(88)

In some of the computations the factor .276 instead

of .3 was used following Williams 9 (then .276 P_i = .258).

The difference between the results obtained in the two

cases is small and no special effort is made to discuss

them separately.
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where

The effect of forced convection is absent in the first equa-

tion and progressively more important in the following three

equations. The fourth equation is herein investigated both

to assess the effect of a forced convection dominated vapori-

zation rate equation and because it would simplify steady and

unsteady combustion studies. Most of the study was done with

the drag coefficient either equal to zero (no drag) or with

Stokes's drag equation (Ca= Z÷/_). But the case of higher

drag was also examined. Droplet breakup was not included.

Both the uniform and the distributed drop radius cases were

studied. In both cases, however, the initial velocity of all

dropswas taken to be equal (_). Some of these assumption might

be questionable,particularly if carried over into instability

studies, but it will presently be seen that, in spite of the

above simplifying assumptions, there are still enough uncertain

points which need investigation. Theories exist to evaluate

the K'sappearing in some of the above vaporization rate equa-

tions as functions of the local chamber conditions (see Appendix

B). However, these theories are based on relatively arbitrary

schematization of what actually happens in a combustion chamber

and how the local chamber conditions should be used in those

theories also involves some arbitrariness. Furthermore, theseK's

set the scale for the combustion length. Thus a factor of 2
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error in estimating K brings about a similar error in the

estimate of the combustion length. For these reasons the above

K's were taken to be constant along the combustion chamber and

their values were so selected as to give the best agreement with

already determined &4_/_0_ . Thus the above vaporization ratethe

equations have been treated more as probable functional forms

than self-consistent applicable vaporization models. Comparison

between the K's which gave the best results and those possibly

predicted by the corresponding theories were made a posteriori

(see Appendix B). The initial radius of the drops ( _o when

distributed initial drop radii were used) has an effect on the

computation of the combustion length similar to that of the K's .

However, it can more accurately be estimated (at least for the

engine configuration presently under consideration) using the

equations and experiments of Ingebo (see Appendix C). According-

ly, its value was changed but only within the relatively narrow,

predicted limits. A listing of the models which were reviewed

is given in Table V. But before discussing them it might be help-

ful to anticipate the conclusions which have been reached.

The conclusion of this study has been somewhat of a surprise

to the author. The author had hoped he would find a more or less

unique model which agreed and explained the variables calculated

by the direct method and given in Figures 9 through 12. He actually

found either no satisfactory model or a multitude of them. If the

parameters K I, K 2, K 3 and K 4, appearing in the vaporization rate

equations, 81 through 84, are given the values recommended in the

literature (Appendix B), none of the models examined even gets
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close to representing accurately the engine under consideration.

If, on the contrary, one reserves the freedom of choosing proper

values for the parameters KI, K2, K 3 and K 4 (to which he is some-

what entitled, see Appendix B) and perhaps for _3o and the drag

coefficient, then he can make many of the examined models give

seemingly satisfactory results. This is so simply because he

generates enough degrees of freedom to meet his requirements. In

spite of this lack of uniqueness, it was possible to reach some

interesting conclusions. The models examined could be classified

according to the following criterion. At one extreme there are

those models which are controlled by the effect of the relative

velocity between gas and liquid drops and the dimensionless liquid

fuel flux yielded by them behaves like the dashed line in the

following sketch (Model A8 represents such an extreme, the drag

is zero so that _¢o = constant and the relative velocity is

large, the vaporization rate equation is strongly dependent on the

relative velocity and the vaporization rate, far from the injection,

is further enhanced by the presence of the I/_ term)

\

l,t

,&

,4

.Z

/
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At the opposite extreme there are those models which are con-

trolled by the effect of the drop radius and their _F/_

behaves as the dotted-dashed lines (Model D1 represents such an

extreme the drag is high so that the relagive velocity quickly

tends to zero, the vaporization rate is independent of the rela-

tive velocity and far from the injector the vaporization rate is

not even enhanced by the presence of the I/_ term). In fact it

is found that it takes a relatively fine balance between the two

effects for a model to reproduce accurately the trend of the al-

ready known W_/_0 _ One then concludes that vaporization rate

equations 86 and 87 with experimentally determined K 2 and K 3 (al-

most one order of magnitude smaller than those possibly predicted

by the theory) and a Stokes' drag equation are necessary to re-

produce satisfactorily the already known W_/_p in magnitude and

trend. The use of the distribution function is not necessary,

although it does tend to improve the agreement. The proper initial

drop radius to use when a distribution function is not used is

_= _ _o/_.ql_ In this study the typical drop Reynolds number is

of the order of I00 so that Stokes' drag equation might be diffi-

cult to accept. In the trade, much stronger drag equations are

used 20 following Rabin 28 who suggested accounting for the droplet

flattening at high _ . However, Eisenklan 29 et al noticed no

flattening for _ up to 400 and actually suggested lower drag

for burning drops than for solid spheres. This work finds the

high drag results hard to accept and suggests agreement with

Eisenklan results.

Another result is that steady state calculations are very
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sensitive to the values of the key parameters such as At3o and

the K's . Stability results might be just as sensitive to

to those parameters. It would then follow that a model should

first be checked for its accuracy in predicting the steady state

in some specific engine configuration before it is used in sta-

bility studies. This work should be seen as one such check.

3.6.1 Summary of Models

MODELS: AI, A2, A3, A4 of Table V. All drops have initially

the same radius and velocity and vaporize according to vaporization

rate equations, 81 through 84. The drag is zero, the K's are con-

stant and they are selected as to give the best agreement between

the calculated and the directly determined _{F/_[oF. The initial

drop radius is 95 _ corresponding to the radius of that group of

drops whose collective volume (mass) is greater than the collective

volume of any other group of drops ( P_3,_ = _ _30/3.qf_ ). The -_o +

was selected using Ingebo data (KK_ _)z3+-_ 75_). The initial drop

radius of 75 _ was also used but the trends of the _=9_ case

can be obtained again by properly adjusting the values of the K's.

In Appendix D it is shown that for these models

and _ is determined by the step-by-step integration

ous vaporization rate equations with_¢=_4o = constant.

sults of Models A1 and A4 are given in Figure 30. A2 and A3 gave

intermediate trends.

Notice:

a) The overall burning rate is too low near the injector and

too high far from it. In these models the effect of the

of the vari-

The re-
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b)

relative velocity is dominant. As long as the relative

velocity is low the combustion rate is also low, but it

increases quickly after a proper relative velocity has

been reached.

All the four vaporization rate equations gave essentially

ti_e same trend even though their functional forms are

quite different.

These models were judged unsatisfactory.

MODELS: CI, C20 C3, C4 of Table V. As previous models ex-

cept that now the drag is different from zero. Stokes' drag

equation is now used: cm. a4/_ . since the typical _ in these

calculations is of the order of i00, Stokes' drag is still smaller

than that most authors would agree should be experienced by the

drops. In Appendix D it is shown that for these models

3

and % is determined by the step-by-step integration of the various

vaporization rate equations together with the drag equation

J
- 4° -k c,: 24/ 

The results of Models Cl and C4 are given in Figure 30. C2 and

C3 gave intermediate trends. Notice

a) The overall burning rate trend is now opposite to that of

the previous models. The burning rate is too high near the

injector and too low far from it. By adjusting the values

of the K's one can obtain good agreement either near the

injector (proper local overall burning rate) or far from
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b)

it (proper overall combustion length) but cannot obtain

both at the same time. In this model the effect of the

drop radius is dominant. The relative velocity tends to

become small and the effect of the radius becomes dominant.

All the four vaporization rate equations gave again similar

trends.

These models were judged unsatisfactory.

MODELS: BI, B2, B3, B4 of Table V. As previous models

except 0( ¢_-_/_ No calculations were made for these models

but from the study of the previous ones one can conclude that

they could conceivably have yielded satisfactory agreement for

some proper selection of C_ This is because the previous two

sets of models gave opposite overall burning rate trends and dif-

fered only for their _ Thus some intermediate C_ function

should give the proper overall burning rate trend.

MODELS: DI, D2, D3, D4 of Table V. As previous models

except C_4/;_ • No calculations were made for these models

but they should worsen the already unacceptable trends of the

models for which _: 24/__ . Increasing the drag, further decreases

the relative velocity and the overall burning rate tends to get

even higher near the injector and even lower far from it.

MODELS: C5, C6, C7, C8 of Table V. The models in which

_=2_/_ were judged unsatisfactory because of their high overall

burning rate near the injector. One way of reducing the burning

O
rate near the injector is that of making the K's temperature de-

pendent. In previous sections it has been shown that the steady-

state gas temperature is lower near the injector. It was thus
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assumed that the vaporization rate is lower where the tempera-

ture is lower. The K's were then taken to be proportional to

the local gas temperature (but the inverse of the density was

actually used) and were replaced by K*/_'Swhere the K*'s are

new constants. This change achieved the goal of reducing the

overall burning rate near the injector and increasing it far

from it (see Figure 30). Models C6 and C7 (based on the modified

versions of the Priem and Heidman, and of Spalding vaporization

rate equations) were judged satisfactory and the dimensionless

liquid fuel fluxes yielded by them are given in Figure 31. In

conclusion a model using a uniform initial drop radius and velocity,

a Stokes' drag and a modified Priem and Heidman.or Spalding vapori-

zation rate equation has been found to represent properly the com-

bustion in the engine under configuration. However, the values of

the K*/_'s are as much as one order of magnitude different from

those predicted by the theories (see Appendix B). In Figure 31

the results from the models which include the droplet distribution

function are also given although they will be reconsidered later.

It can be seen that the distribution function improves the agree-

ment but not in an essential manner.

MODELS: A5, A6, A7, A8, B5, B6, B7, B8 of Table V. It has

been seen that in order to get acceptable agreement when a uniform

initial drop radius is used, one should either use a C_ 24/_ and

one of the first four vaporization rate equations, or cm= Z+/_-L

and some of the second four vaporization rate equations. Both lower

drag and lower vaporization rate near the injector serve the purpose

of reducing the overall burning rate near the injector and
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increasing it far from it. When both effects are combined, the

correction is too strong so that Models A5, A6, A7, A8, B5, B6,

B8 are not acceptable (see Figure 30).

MODELS: D$, D6, DT, D8 of Table V. These models were not

explored, but on the basis of the above reasoning they could

possibly yield acceptable results.

In the other models of Table V, a Nukiyama-Tanasawa initial

distribution function for the drop radius was used. The intro-

duction of the distribution function did not change the nature of

the trends. It just smoothed out the differences making more

models acceptable or marginally so. However, a stretching of the

combustion length due to the slow burning of the largest drops

was noticed. Thus, in general, those models which with a single

initial drop radius tended to give too high an overall burning rate

far from the injector, i.e., the low drag, relative velocity sen-

sitive models, give now better results, the opposite being true

for the high drag radius sensitive models. Some representative

trends are shown in Figure 32. Discussions of the models involv-

ing the drop distribution function starts below.

MODELS: GI, G2, G3, G4 of Table V In these models it was

assumed that all drops have initially the same velocity but their

radii are distributed according to some specified distribution

function (soon to be identified as a Tanasawa-Nukiyama type). It

was also assumed that there is no nucleation or drop break-up so

that drops which initially have the same radius will always have

the same velocity (distribution function _._(z,,_ ). Under these

assumptions the spray equation 19 reduces to (see Appendix D)
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(,<,+,j+
which is equivalent to

-- 9_. "),, J

(90)

(91)

(92)

where the second equation specifies the change of _ along lines

defined by the first one. In these equations _( , _ and _ are

seen as functions of z , ;L In these models, the drag on a

drop follows Stokes' equation

j _ _ r_.,j .f> I_-_,lr,,. _. __ _._ b- (_- _)

and the coefficients K 1, K 2, K 3 and K4 of the vaporization rate

equations are constant. Equations 91 and 93 determine _t'% (_%)

and %=_(*, _,_i) if ,-_(_) and f:2[_) are known. Fortunately,

_=_(*) and _=_(m) are known (Figures 9 and i0) through the

application of the direct method. While integrating equations 91

and 93, one can also evaluate the changes of _ by equation 92,

but some care must be used since in this equation _ and _ must

be seen as functions of _ and % However, _4 is not explicitly

known as a function of _ and % but it is implicitly defined as

such by equations 91 and 92. Equations 91, 92 and 93 were numeric-

ally solved for the various burning rate equations (see Appendix

E). A number of observations can be made before answering the

question of whether these models are satisfactory or not.
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a) Equation 92 can be written as follows

= _ (94)

It can then be seen that while integrating equa-

tions 91 and 93 one can evaluate the ratio _//o

having to specify _C0,%). This means thatwithout

one can appreciate the influence of the selected

burning rate equation (91) and of the selected drag

equation (93) on the distribution function without

specifying the actual drop distribution function

at z-o and valid for any drop distribution function

he may later specify at 2t=O Thus, in Figure 33

through 36, the_/_o's for the various cases are given.

It can be seen that when equation 81 is used (Figure

33), small drops burn much faster (inverse dependence

on % ). Thus, at 5" from the injector all drops with

radius < 35_ have practically already been burned.

On the contrary, large drops burn very slowly. Thus

at 40" the radius of the largest drops was reduced only

from 155 _ to 134 _ . Or, to put it another way, at 40"

the number of drops having 134 _ radius is still 3_/o of

the original number. The slope of the vertical lines

indicates the rate of decrease of the number of drops

of a specified initial radius: a small slope line means

fast rate of decrease. It can be seen that the slope

gets smaller as the radius gets smaller. Quite a dif-

ferent picture is offered by Figure 36. Here large drops

burn much faster and very small drops hardly burn
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b)

at all. Here the burning rate equation is independent

of the drop radius and depends mostly on the relative

velocity; small drops tend to move at the local gas

speed whereas large drops tend to maintain their original

speed. In Figure 36 one sees that 12 _ drops are still

present at 40" while the largest drop radius at 40" is

only 93 _ In this case, the horizontal lines indicate

that at 40" the number of drops in all radii groups have

been reduced roughly by the same percentage. The number

of small drops is reduced mostly near the injector, due

to the high initial relative velocity, whereas the number

_ i =_ _ _ a _,1_m_ r._Q4-1 _I f_r frnm @he injector

In summary, fuel consumption that is high near the injector

and low far from it is calculated with vaporization rate

equation 81. The opposite is true for vaporization

rate equation 84.

The actual local distribution function (_-_(x.,)) can

be evaluated if the initial distribution function

(_o-_(8,_) ) is specified. Ingebo (Appendix C) measured

the drop distribution function near the injector under

LOX/ethanol firing conditions. He also correlated the

volume-mean drop size ( _30 ) to orifice diameter and

relative jet gas velocity. An unusual amount of specific

information is then available to select the initial dis-

tribution function for the engine under consideration.

A Nukiyama-Tanasawa distribution function with rmax=155_

and r30 between 50_ and 70_ was then selected
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c)

_ $.qlS" _to/_3o

The local distribution function is then given in

Figures 37 and 38 for the case of Stokes' drag,

vaporization rate equation 82, and r30 = 70 _ and 50_ .

The quantity F, defined by

F: Io

dr. (96)
is the local (at 2 ) percentage of the initial

(ate-0) number of drops with radius between 4L and

• + i0_ (see Appendix C).

An interesting question can now be answered, will an

initially Nukiyama-Tanasawa distribution function re-

main the same throughout the engine? In general there is

no reason to expect it. If this were the case one

could set _ J.yl._ 45/_1 5")

and one should get straight lines (of varying slope

and intersect) from the following function when

evaluated at several 2's

Figure 42 shows that one does get straight lines when

the vaporization rate equation is equation 84 (if very

small drops are not considered). The other three burn-

ing rate equations did not quite give straight lines

(see Figures 39, 40 and 41).
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)

d) A model which involves the distribution function is

adequate if the local dimensionless fuel flux as

calculated by it agrees with that calculated by the

direct method and given in Figure 12. Having the

distribution function _-_(_%)satisfying the spray

equation 90, it can be shown that the dimensionless

fuel flux can be evaluated by either one of the follow-

ing two expressions (see Appendix E)

_(x)

;%= A Wor] -_" -.- ' - (98)

a

An excellent check is then available on the overall

validity and accuracy of any given solution. The

above two expressions must yield the same (WF/&4oF)

for all _'s. Calculations show that when q_ is con-

stant the above check is met exactly whereas in the more

complicated cases in which _ is a function of both _.

and _5 the above check is met with decreasing accuracy

as _ increases, but is still more than adequate for

the purpose of these computations (one can hardly dis-

tinguish _]F/V]oF calculated by equation 97 from that

calculated by equation 98 in figures like Figure 30).

D
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The basic question of whether these models are adequate

or not can now be answered with the help of Figure 44. As this

figure shows, all the four vaporization rate equations are satis-

factory for the first part of the engine, but tend to give too

long a combustion length. Alternatively, by properly selecting

the values of K I, K 2, K 3 and K4, one could have had good agree-

ment on the combustion length but then the combustion as calcu-

lated by these vaporization rate equations would have been much

too active near the injector. In conclusion, these models are

not completely satisfactory. Before going to other models, it

might be pointed out that the values of the constants KI, K2,

"_'3 ...._"_ "'4v ......=__ _0 _,_..............._ _r_ng _nfl!1_nrp _n the overall solu-

tion. This is adequately demonstrated in Figure 43.

MODELS: G5, G6, G7, G8 of Table V. The previous models are

not quite acceptable because they give an overall combustion rate

which tends to be too high near the injector and too slow far from

it. Thus, if instead of using theK's one uses theK*/_'s , as in

Models C5, C6, C7, C8, one can expect a better agreement since the

substitution achieves the goal of reducing the vaporization rate

near the injector and of increasing it far from the injector.

Accordingly, the vaporization rate equations given by equations

85 through 88 were used again, together with a Nukiyama-Tanasawa

initial drop distribution function and Stokes' drag. Figure 45

shows that now all four vaporization rate equations give satis-

factory results. Vaporization rate equations 86 and 87 could

possibly be selected as those giving better results while vap,.,ri-

zation rate equation 88 might still be considered acceptable and
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D
it is attractive for its mathematical simplicity

It can be shown that with this vaporization rate equation and

with _=24/_ closed form solutions of the spray equation can

be 'obtained for some specific _=_(*)functions.

MODELS: El, E2, E3, E4 of Table V. In these models, a

Nukiyama-Tanasawa initial drop distribution function was again

selected and the spray equation was solved but with the further

assumption of no drag (all drops move at constant speed) and with

the vaporization rate equations 81 through 84. Figure 46 shows

that vaporization rate equations 82 and 83 would give again

reasonably good results. Indeed in these models one has again

decreased the overall burning rate near the injector and in-

creased it far from it. This was achieved not through a modifi-

cation of the burning rate equations, but through a modification

of the drag equation. The setting of 7x_--_'0 = constant is the

limiting case of an extremely weak drag. Parenthetically, notice

that the assumption of constant drop velocity also improved the

result obtained with the vaporization rate equation 81 in which

the relative velocity does not appear at all. This is because

the space rate of change of _ still depends on _4 (Equation 91)

and so do the distribution function (Equation 92) and the dimen-

sionless fuel flux (Equations 97 or 98). Also notice that the

vaporization rate Equation 84, which depends heavily on the rela-

tive velocity, now gives too high a rate of overall combustion

far from the injector.
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MODELS: H2 and H6 of Table V. In these models a Nukiyama-

Tanasawa initial drop distribution function was used, and the

steady state euqation was solved for the case in which the drag

of the drops is higher than that given by Stokes's equation.

The following drag equations suggested by Rabin 28 were used

.Z17

= .27,' ;,e°

Vaporization rate quations 82 and 86 were used. The dimension-

less fuel fluxes thus calculated are given in Figure 32 and they

are seen to exhibit the behavior characteristic of the high drag

model high burning rate near the injector and low far from it

due to the low relative velocity which is quickly established

thanks to the high drag. There is no way of matching the direct-

ly determined Wp/_wF by varying K or K* or '_--3o Model H6

(and Model H7 which was also calculated) gave marginally accept-

able results due to the factor |/_ which increased the vapori-

zation rate far from the injector, thus partially offsetting the

effect of the high drag.

3.7 Conclusions for the LOX/ethanol System

The following conclusions about the steady combustion of the

LOX/ethanol system have been reached through the experimental and

analytical work presented in the previous section. Extension of

these conclusions to other propellant systems must be made with

care. The main conclusions are:

I) The problem of steady rocket combustion is particularly

suited for the application of the direct method. Droplet
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2)

3)

drag and vaporization processes are anything but com-

pletely understood. By the application of the direct

method, most of the gas variables can be determined

using only static pressure measurements and without any

droplet drag, vaporization and distribution models. In

the process the main assumption becomes that of instantan-

eous chemical equilibrium of the reaction products. This

assumption can hardly be avoided whether one uses the

"direct" or the "conventional" approach (3.0).

The assumption of instantaneous chemical equilib-

rium of the reaction products has been found to

1_ad to good results (for the LOX/ethanol system)

(Section 3.3.2).

For chamber pressures between 150 and 600 psi, injection

equivalence ratios between .9 and 1.9 (O/F by weight

between 2.32 and i.i), and nozzle entrance Mach numbers

up to .55 the steady state of the LOX/ethanol system can

be determined by solving three algebraic equations con-

taining six unknowns ( p, _, _, Wp, _ s _/_ ). One

of the unknowns is the flux of liquid oxygen (_) and

can be set equal to zero for most of the engine. A

second unknown is the ratio between liquid drop velocity

and gas velocity (_C/_- ) and can be estimated at

various distances from the injector. The influence of

_/_u , although not negligible, is not very large so

that estimates for it are sufficient. One is then left

with three equations in four unknowns ( {, _,_, W F ) and
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4)

5)

the measurements of one of them (usually the static

pressure, _ ) is sufficient to determine the other

three. Among the variables thus determined is the

flux of liquid fuel (W F ) which is of great interest

for the study of combustion efficiency, of the relation

between mass and energy sources, of droplet drag and

vaporization models and, possibly, of combustion sta-

bility (Section 3.3.2). Similar equations could be

obtained for other propellant combinations and should

be of practical use

One of the most important findings is that the steady

state of the LOX/ethanol system can be expected to be

anything but axially uniform in engine designs of prac-

tical use. This finding probably holds true for most

LOX hydrocarbon systems as well. Gas pressure, tempera-

ture, density, average molecular weight, speed of sound,

composition and ratio of specific heats, all exhibit

axial non-uniformities of diJferent magnitudes depending

on injection mixture ratio, chamber pressure and nozzle

entrance Mach number (Section 3.3.5). The only variable

which shows axial uniformity (at low nozzle entrance

Mach number) has been found to be the volumetric energy

release, i.e., the energy added to the gas per unit

volume of the combustion chamber (Section 3.3.3).

When the axially nonuniform steady state was subjected

to a small amplitude periodic perturbation, it was found

that its frequency is about 20% smaller than it would
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6)

7)

have been had one assumed a axially uniform steady

state (Section 3.5). This explains why the frequency

of the shock-type longitudinal instability has been

measured to be close to the "acoustic"frequency (based

on the axially uniform steady-state assumption). A

shock-type wave should exhibit a higher frequency than

the acoustic one. Indeed it does, it is the acoustic

frequency which has been overestimated by assuming

steady-state axial uniformity.

Relevant to theoretical studies of instability is the

finding that, in steady state, the effect of droplet

drag on the momentum equation of the gas is probably

higher than (or at least equal to) the effect of

vaporization (Section 3.3.4). Then there seems to be

no reason for neglecting drag terms and keeping vapori-

zation terms in theoretical instability studies. If

anything, it would seem more consistent (and mathe-

matically simpler) to neglect both (Section 3.5).

Also relevant to theoretical studies of instability is

the finding that the quantity _/_(_'O overestimates the

actual internal energy of the gases by as much as 25%

(if the complete combustion value of _ is used through-

out the engine). Wanting to express the internal energy

by _/_(_-,) , a _ somewhat higher than that corresponding

to complete combustion is suggested (to account roughly

for the fact that the specific heats of the products

change as the temperature goes from its reference value
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8)

9)

to its local chamber value). For LOX/ethanol _= I.Z35"

rather than [_ 10Zl is suggested (a 12% difference in

{[-_) ) (Section 3.3.3). Perhaps more important is

the finding that the energy source is not proportional

to the mass source due to an axially varying gas mix-

ture ratio (Section 3.3.3). The ratio of the two sources

can be expected to exhibit the same degree of axial

disuniformity that the gas variables exhibit since they

are both related to the axially varying gas mixture

ratio (Section 3.3.3).

The one-dimensional approach to the study of the processes

occurring in the first few inches near the injector is

hardly justifiable. However, some conclusions were

reached which are believed to be correct and of practi-

cal interest. The static pressure has been found to in-

crease in the vicinity of the injector before decreasing

below its in3ector value. The initial momenta of the

liquids are responsible for the increase. The point

at which the liquid velocity is equal to the gas velocity

(_-_ ) is further from the injector than the point at

which the static pressure tops off after increasing

(Section 3.4)

The initial momenta of the liquids should not be neglec-

ted in steady-state computations. Their contribution to

the accurate calculation of the gas velocity is important

throughout the engine (Section 3.3.4).
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io) The previous conclusions have been reached without

specifying anything about the distribution, drag and

vaporization of the droplets. Some possible models

for the distribution drag and vaporization of the drops

were then studied. It was concluded that a Nukiyama-

Tanasawa initial drop distribution function, a Stokes'

drag and either of the following two vaporization rate

equations

de-
Modified Pr iem-Heidmann

Modified Spalding

Reproduced accurately the steady state of one sp@cific

LOX/ethanol engine configuration (Configuration II of

Table IV) but no droplet breakup effect was included.

It must also be noted that the coefficients K*2/

and K*3/_ represent somewhat arbitrary modifications

to the vaporization rate equations suggested by Priem-

Heidmann and Spalding respectively. Had one used those

vaporization rate equations in their original forms, he

would have reporduced very poorly the actual steady state.

He would have overestimated the overall burning rate near

the injector and underestimated it far from it. He would

have concluded that most of the propellants are burned

in the first few inches and the remaining linger on at

length while the direct method revealed a combustion

axially more distributed. It was also found that the use

of the distribution function is not really necessary,
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although it does tend to improve the results. The

proper initial drop radius to be used when a distri-

bution function is not used is _= _%3e/3.915. In this

study the typical drop Reynolds number was of the order

of i00. Nevertheless Stokes' drag equation was found

to give better results than higher drag equations. In-

deed higher, drag equations could have hardly been

judged acceptable without substantial modifications to

the vaporization rate equations. Introduction of very

specific droplet break-up processes could have possibly

made the higher drag models acceptable (Section 3.6).
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4.0 UNSTEADYSOLID PROPELLANTBURNING

This author has recently 30 become aware of a procedure,

introduced by Ya. B. Zel'dovich 31 in 1942, to study unsteady

solid propellant combustion. This procedure has since become

widely used in the Russian literature. It actually represents

an application of the "direct" method although it is generally

viewed as an intelligent trick to solve a particular problem

rather than a specific application of a general way of solving

physical problems. Both the "conventional" and the "direct"

(Zel'dovich) approaches to the study of unsteady solid propellant

burning are here briefly reviewed. The emphasis is on the com-

parison between the two approaches rather than on the discussion

of the problem of unsteady solid propellant burning. The work of

C. L. Merkle, S. L. Turk and M. Summerfield 32 will be closely

followed in presenting the "conventional" approach to this problem.

Consider a one-dimensional, semi-infinite, homogeneous solid

propellant which is burning steadily. At t-o , the pressure becomes

a specified function of _ , _-_(}), due, for example, to depressuri-

zation. The problem is that of determining the resulting unsteady

burning rate %=%[_). The physical system is made up of a solid

phase, a gaseous phase and the common interface. The characteris-

tic times for heat transfer, chemical reaction, and mass diffusion

in the gaseous phase are found to be two to three orders of magni-

tude smaller than the characteristic time for heat transfer in the

solid so that the gas phase can be treated in a quasi-steady manner.
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P

D

Fixing the coordinate on the regressing surface of the

solid one can then derive the following equations

x _

Energy conservation
in solid

) - -
Energy balance at

solid-gas interface

Energy conservation

in gas

where T temperature

thermal conductivity of solid propellant, gas

density of solid propellant, gas

specific heat of solid propellant, gas (at

constant pressure)

evaluated at the solid propellant side of the

solid-gas interface

( )s,_-- evaluated at the gas phase side of the solid-
gas interface

_s,_ = heat released at surface, in the flame

_ rate of product generation

'L(_') --_ burning rate

in the third of the above equations use has already been made of

the quasi-steady gas phase assumption, which also implies that,

in this equation, the burning rate _ should be considered con-

stant. In both the conventional and the direct methods, the

third equation is then a steady-state gas phase energy balance.

In the conventional method one then formulates a model for the

steady-state gas flame and solves the third equation for _T/_

D on the gas phase side of the solid-gas interface. This derivative
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will be a function of _ and _ which appear both explicitly

and through _ / __._

( )
Having this derivative and substituting it into the second

equation one finds

for _)The first equation can now be solved

set of steady state measurements.

pressed as

(n-T.)

Indeed the

problem is now reduced to the solution of the heat equation given

the boundary conditions at the solid-gas interface (_= _Ea,_))

and at infinity on the solid side (T_). For any given value

of _ there will be a value of _ which satisfies both the first

eauation and _ts bnlln_, _n_-_ _ _- _--: ....... l_i

given _-_} , is thus determined. Notice that in the actual

application of the conventional method experimental results con-

necting the steady-state burning rate to the pressure for a given

propellant temperature ( T_ ) are actually used to supplement the

32
lack of information about the actual steady-state flame structure

Thus, even in the conventional approach an experimental function

of the type %-_(_,T_) is used. Zel'dovich proposed to do

away completely with the problem of the steady-state

ture and to determine the steady-state _ -function by

In steady state

where _$ is the burning surface temperature

be eliminated in favor of _ , % if, besides

one also measures L_-%(Tss_).

flame struc-

an additional

can be ex-

and _ and _ can

measuring _- • _ _ "F._
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Thus, the "direct" use of measured quantities splits the problem

of unsteady solid propellant burning and its quasi-steady gas

flame into two problems which can be analysed separately (Split-

ting Property). On one hand there is the problem of the unsteady

burning of the solid propellant which can be studied independent-

ly of any gas flame model and on the other hand there is the

problem of the structure of the gas flame which could also be

studied using the experimentally determined _-._(a,,](but this

part of the study does not seem to have been performed). However,

in this particular case the equations are split also in the con-

ventional approach due to the quasi-steady gas phase assumption.

split. This solution of the problem of unsteady solid propellant

burning is not subject to the validity of the flame model but only

to the assumption of quasi-steady gas phase (Assumption Splitting).

If the results obtained with the direct approach of Zel'dovich

were found to be in disagreement with further experimental data

(say, of stability of the solid propellant combustion) one would

have either to declare the quasi-steady gas phase assumption in-

correct, or check into the accuracy of the measured _-_{e,#)

since only basic equations were used (Experimental Data Check).

This particular application of the direct method is one in which

the maximum information property of the direct approach is well

exemplified. The complete problem consists of both solid and gas

phases and a complete model would require not only the solution of

the heat equation in the solid, but also the determination of the

flame structure in the gas. Thus, after having gone through the

i ....
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first two steps of the direct approach (namely i ) collection

of experimental data ii) solution of basic equations using

directly experimental data) one should go to the third and last

step of determining a complete model. But even before going

through the third step (i.e., while the structure of the flame

is still unknown) a wealth of information of practical use on

stability, ignition, reignition, etc. of solid propellants has

become accessible simply through the study of the restricted

solution (as in the case of the steady-state combustion of the

LOX/ethanol system). Some of these studies have recently been

collected into a single publication 33 which should become avail-

able in 1970.
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)
APPENDIX A: ONE DIMENSIONAL CONSERVATION EQUATIONS

Consider a fluid made up of gaseous reaction products and

drops of liquid fuel and oxidizer. If one assumes that:

i) It is sufficient to consider some average velocities

for the two liquids

2) Negligible friction and heat transfer effects

3) The volume of the liquids is negligible

Then the following conservation equations can be written

The steady-state equations of Section 3.2 are obtained from

the previous ones after integrating them from the injector to any

station
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If one assumes that the temperature of the liquids go instan-

taneously from their injection temperatures (Top_) to their wet

bulb temperatures relative to some average chamber pressure (Twp,#),

he would then get for A0f,_ ,AF,_ the following expressions

thus recovering the equations of Section 3.2.

Some considerations on the constancy of the steady-state

latent stagnation enthalpy of the gas can be made rewriting the

21
previous energy equation as follows

Where the left hand side is the latent stagnation enthalpy of the

gas and the right hand side can be called the energy source for

the gas. This source would be the energy actually made available

to the gas, i.e., the chemical energy released minus the energy

taken up by the vaporization processes and the kinetic energy of

and A_ _the liquids. Setting _F+_-L-]=(A_ ) ( + )_, _¢--J)

(which means that the energy taken up by the unit weight of liquid,

to warm up and vaporize and move, is constant with x ) the pre-

vious equation gives

which shows that the latent stagnation enthalpy of the gas is
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constant with Z when the vaporization process is such that at any

distance from the injector, equal fractions of the two propellants

have vaporized. In this case one could set

and the previous equation becomes

o
and would be constant, since the composition of the gases is

C
constant, are constant by definition and (A+ _._) are

constant by assumption. Another case in which the latent stagna-

tion enthalpy of the gas would be constant is when both _o = const.

L k z o

in general, however, the latent stagnation enthalpy of the gas can

be expected to change with the distance from the injector even in

steady state.

The steady state energy equation as used in the actual numeri-

cal computations, was written in a slightly different form. This

alternative way isolates the chemical energy released rather than

the net energy source for the gas

where the term in brackets is the chemical energy released (dif-

ference between the enthalpy of formation of the products and that

of the reactants) part of which goes to warm up, vaporize and move

the liquids but most of which acts as energy source for the gas.
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This term was replaced by __0 where _0 is given by

o ° 1
_'=__."' ';'[__ x_(.,,. )__(,..)__(.:,,),

To verify the equivalency between the two expressions for the

term in brackets, one recalls the definitions of _ and

and substitutes them in the definition of po

_e_ro_w_""':_%--,..,x_,.,,)_-w_""_'_,_,_-_...,.. _"""W=c,...),°

o= r,,,J,°+( .,.-_)j.. +('.,.,__) l;,,

Thus the steady state energy equation can now be written as

for the numerical computations the following definitions were

further introduced

e+__ = 4. aaG I_" X,"

, 7.7".-

_,.,,. [ (_'+,:(-,°--r._-_ ('_'+_(:'' ",,)],'.,,
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By which the energy equation, as used in the numerical computa-

tions, is obtained
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APPENDIX B: COMMENTSON THE DROPVAPORIZATION RATE EQUATIONS

In the first section of this appendix, the origin of the

vaporization rate equations used in this study is briefly sum-

marized and the theoretical values of their coefficients are com-

pared with the values which gave satisfactory results for the

engine under consideration. In the second section, some conclus-

ions are offered.

1.0 The following vaporization rate equation was studied

Jt =-4 I ,`" =- + 4 .e,.. =J',=l ,,-,,,I
--_.,-i I.... I,. ._=,,,,,_',":,! ='r'.F-i,-,_l =r r_pq of the above eauation were

studied. The following four cases were then selected as sufficient-

ly representative and studied in more detail

R. _0 184

,R= - _',,,4. /a',.

Equation la. This equation in the form

"e._ "

in which case

9
can analytically be derived under the following assumptions :

One dimensional, spherically symmetric system, no forced con-

vection .

(la)

(ib)

(Zc)

(id)

(2)

(3)

Steady state.
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No oxidizer on the surface of drop.

Constant and uniform drop temperature (equal to the

boiling temperature).

No fuel in the ambient atmosphere.

p_ = _ = constant ( L¢ = const and f_ independent of

drop distance).

The burning rate given by this equation was found to agree

well (within a factor of 2 for K, ) with measured burning rates,

in controlled experiments (mostly in ambient air). The para-

meter _i was found 9 to be of the order of 10 -2 cm2/sec. _ ,

for the engine under consideration, near the injector (say at 4")

where there is plenty of hot gaseous oxygen (say _, = .9;

= 2000°K) and the relative velocity is small,is now evaluated.

It is set

= 6630 cal/g (Heat of reaction per unit mass of fuel

vapor)

[The reaction under consideration is:

C,I_OII .+ 30L -_ 3g, O . ZCot

Then the heat of reaction per mole of Cage 6)N

3 (57.798) +2 (94.04) - 56.24 = 305 Kcal/mole

Hence _ = (305 000 cal/mole)/46 g/mole = 6630

cal/g]

&" = 2.09 goxidizer/gfuel (stoichiometric mixture ratio)

= .34

32x3/46xl = 2.09]

cal/g OK (Specific heat)

[Computer Calculated for the engine under con-

is:

sideration at 4"]
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T

L

= 454°K

V = .9

= 2000 OK

[Computer calculated for the engine under con-

sideration at 4"]

1.2 10 -4 cal/cm sec OK (Thermal conductivity)

[Evaluated at 1500°K (see Lorell, J., Wise, H.,

Carr, R. E., J. Chem. Phys. 25, 325 (1956)]

.8 g/cm 3 (fuel density)

136 cal/g (Latent heat of vaporization per unit

mass of fuel @ _ = 300 psi)

(Liquid temperature = boiling temperature

300 psi)

to find: K I = 1.15 10 -2 cm2/sec.from which one can evaluate _

The comparison with the K's and K*/p's (evaluated at 4" where

F = 3"4810-3 g/cm3) which gave the best agreement between the

calculated and the directly determined Wp /WeF , for the various

drag coefficients, is given in Table VI. The agreement is seen to

be satisfactory. Notice, however, that a vaporization rate equation

of the form _./Jt--_/8.L , which does not include any forced con-

vection effect, is not very realistic for the engine under con-

sideration where _ is of the order of i00 even in the case of high

drag (low relative velocity).

Equation lb. This equation was proposed by Ranz and Marshall 22 who

found it to correlate well with vaporization rates in conduction

and forced convection experiments (o_Z_) but without combustion.

They used drops of various liquids in air at temperatures up to 220°C
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with 300_ _ _ 555_ and the temperature of the drops was close

to the wet bulb temperature. The term .276 P_Y_- (actually

.3 )9'22was intended to be a correction factor due to the

forced convection to be added to the pure conduction vaporiza-

tion coefficient. Thus, according to this theory _ = _0= 1.15

10 -2 cm2/sec. From the results of Table VI one concludes that

the theoretical vaporization rate coefficient is roughly five times

higher than the experimental one (the combustion chamber length

calculated with the theoretical vaporization rate coefficient

would have been roughly five times shorter than the actual one).

This vaporization rate equation is herein referred to as the Priem

23
_nd _idmann pquation since they introduced it in the liquid

propellant engine problem after having modified it to account for

the difference between the chamber pressure and the liquid drop

vapor pressure.

E_uation ic. Spalding
24

, using stationary porous spheres (most-

ly of i" diameter) and moving air at room temperature found that

the following vaporization rate equation fitted satisfactorily

his measurements (800_ _ _ 4000)

= .s3 .
•

• I
In this equation _ is "taken to be the mean rate of mass

(4)

transfer per unit area times the diameter" thus

and

/.__ _m. Z .?.._t / m *

,4-_ q t

(5)
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And using the coefficients previously given (and _ = 8 10 -4 g/cm

* 2
sec) , one finds _'3 = 1.45 10-2cm /sec which is more than one

order of magnitude larger than that giving the best agreement

between the computed and the directly determined _p/w0_

Equation id. This equation could be visualized as representing

a vaporization rate even more strongly affected by forced con-

vection than the previous ones.

It might be worth noting that the same _('s and 's gave

the best results in both the uniform and the distributed drop

radii cases (see Table VI and recall that in the uniform drop

case _o = 5 %|o /3.915, i.e., the drop group in which most of the

mass is concentrated was used), thus indicating again that the

use of the distribution function does not change substantially

the nature of the results. Also one sh,.,uld notice that the cal-

culations show that in order to obtain good agreement with the

directly determined WF /_0p, the factor multiplying, for example,

[ I + ,3 _ _ ] shouldn't be constant but actually should increase

with x starting, say, with a value of 2.5 10 -3 cm2/sec at 4"

* -4
A constant viscosity coefficient of 8 i0 g/cm sec for the

combustion products was used throughout the computations. The

range of temperature of greatest interest is 2000°K _ T _ 3200°K

so that the viscosity coefficient can be expected to vary by

(3.2/2)½ = 1.264 or approximately 11.5% from its average value.

Moreover, if the varying composition of the combustion gas is

taken into account (as T=2027°K the calculated main gas products

are (mole fractions): 02(65%), CO2(13._), H20(20.9%); while at

T=3174°K: CO (25.7%), C02(12._% ), H20(44%)) one finds that the
viscosity coefficient is %10- _ _ _40 10 -4 g/cm sec with a

slightly smaller variation than that predicted _y the square
root temperature dependence. A value _ = 8 i0- g/cm sec was then

selected because the higher temperature region is of higher interest.

It was not judged necessary to consider a varying _ due to the

presence of more far reaching uncertainties about the drag and

vaporization models. Similarly the specific gravity ( _& ) of the
liquid fuel was kept constant and equal to .7 g/cm J.
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The theoretical value of this factor on the contrary would

start from a higher value of 1.15 10 -2 cm2/sec and probably de-

crease with x This is because, in equation 3, the factor

_ _,,m/_' probably decreases more rapidly than the factor

(-r_-_) increases (but the value to be assigned to Yos_

becomes quite arbitrary). Thus the overall burning rate, calcu-

lated with the theoretical _ , would be much too high near the

injector and much too low far from it.

2.0 The main reason for briefly reviewing the origin of the

vaporization rate equations which were used, is to emphasize

that both the theoretical conditions under which they were derived,

_ _ _v_m_n_1 _n__Q _ which they _,_r_ _,__

are indeed quite different from those occurring in rocket engines.

Composition, temperature, density, etc. of the gases within which

a drop burns in an engine change considerably within the life time

of the drop and so do the relative velocity and the Reynold's num-

ber. Even after accepting the assumption of quasi-steady droplet

burning one still does not have enough experimental data to check

the validity of the burning rate equations corresponding to the

entire range of situations to which a drop is exposed in an actual

engine.

It is then reasonable to conclude that the vaporization rate

Equations la, ib, ic and id are to be interpreted more as possible

functional forms to be tried out in an engine, than as exact, or

even approximate, relationships. This is to justify the freedom

which was used in these calculations in the definition of the k's

and k_.'s. This also helps emphazing the need for stability studies
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to be based on vaporization rate equations whese capability of

giving correct steady state results have been checked. Thus,

while the theoretical coefficient of burning rate Equation la

was found to be of the correct order of magnitude for the engine

under consideration, that of burning rate Equation Ic was more

like one order of magnitude off.

It should also be pointed out that these calculations show

that the "right order of magnitude" of the vaporization rate co-

efficient will roughly lead to the estimate of the "right order

of magnitude of the combustion length" and this, in general, can

hardly be considered sufficient.
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APPENDIX C: INITIAL DROPDISTRIBUTION FUNCTION

In the first section of this appendix the terminology of

the distribution function is reviewed. In the second section

the selection of the particular distribution function used in

this study is justified.

1.0 In this section the paper of Bevans 25 is closely followed.

Having a group of drops of different sizes (photo of a spray)

one may consider

Total Number

Total Volume

Total Mass

Then one may be interested in:

(Nr),

_# ) =
•-,mr Jr. "T

( W ) = total number of drops which have diameters larger than D,

(_v) f total volume of the drops which have diameters larger than D,

(_n)= total mass of the drops which have diameters larger than D,

where A/, _w,_n are cumulative forms to express a districution.

Notice that if one were interested in:

Number of drops which have diameters larger than D,

Volume of drops which have volumes larger than _D_G

Mass of drops which have masses larger than pL_3/6

he would come up with the same distribution function in all 3 cases

since the number of drops with volume _,D3/& is equal to the

number of drops with mass • f& ffJ)_& and also equal to the number

drops with diameter _ D]. Or one may be interested in:of

J.I-J#], number of drops with diameter between D and D + dD
(out of the total number)

J_._= volume of drops with diameter between D and D + dD

(out of the total number)
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=_= mass of the drops with diameter between D and D + dD
(out of the total number)

where _w ; {v • /M are differential forms to express a distri-

bution (equal to the derivatives of the corresponding cumulative

forms).

Experimentally it has been found that the measured values of

the _ 's (distribution functions) versus D
• - ,,4.s, s

by a function of the form _ _ C

are well correlated

Thus, if one sets

_ . J___= eD
d)

'C
(l)

then p,3

tv _/Rv -'• --'" t _

t

C
(2)

Since _._ is the number of drops having diameter between

D and D +_ dD and their volume _V is ._,l_*fl_'O"J_);_l_ _1_._ "

Finally

(3)

Of the constants appearing in Equation i, one can say that

depends on the size of the sample (since the number

of drops with radius between D and D +dD will be

dependent on the total number of drops)

is related to the average drop size

is related to the spread around the average (high _

low spread)

is, in principle, arbitrary

_, _, _ are interrelated.

Experimentally it is found that with _-z , _= / (Nukiyama-Tanasawa)

liquid sprays are often well correlated. If _, _v '_ , are
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defined on the basis of a unit mass of liquid in the spray, then

is defined in terms of _, 9,

Averaqes: in general one can define averages by setting

•-. /.: J- j' .:-' J_
(',>..)= : _ I

Two common averages are

_.o _ _ . sum of all diameters = diameter - number

jj_ total no. of drops mean

sum 2_ _ll volumes I lume number

]JN J _total no. of dr-_/ - meanV°

D30, equal to the diameter of the average drop volume, is usually

used although the diameter of the average drop projected area

(D20) should be the one more easily measurable.

Expressing b in terms of DI0, D30

Having

dD -

/o _ 3 .yj

yc y. ,.P=. =. ,,_ -b= -_

a 1 s ° ])30 : _"Q ; e" 'JPo]_J _._0%1.'' J_ J %"_ 12')

_,,_n_roca_ _a_l'_,_-'.',-:(',,÷,)--'_/
and having set y_ _ .

t. = JR,,=,,'_/.-_='
The same results are obtained from _

(4)

(5)



210

I:, • J_

since D| 0 = ._'.2)" -4._ J._

substitutions DI0 and D30 in Equations i,

-; ) one gets

3)10

3. qtS"

2, and 3 (with _-z ,

[total number}

as fractions of _total volume) •

Ltotal mass j

[total number)

If one divides them by the_total volume I he gets new distribution
Ltotal mass a

_{unit number}
functions giving fractions Or_un_.t volume|-

Lunlt mass •

The total number is given by _0%iV "_ _&t_'_J_ " _

The total volume is given by = r¢-;__ _(

The total mass is _ times the total volume, hence

1 J_- Ilb
Lt¢,, j 3

and taking into account Equations 4 and 5, one gets:

) ((fraction of} _( _,. ]
unit number/ =

(7)

(8)

(9)

(io)
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_jI fraction of_ IZo-_I _)p. /
unit volume/

• J_3o

_ fraction of_ = _- (K__@;r_6_ _ ,"
unit mass J l_o_& _ _)Jo j

(ii)

(12)

Equation ii is the equation used by Ingebo 26'27 This equation

gives the volume of the drops with diameter between D and D+I

per unit drop volume (in other words, the volume of the drops

with diameter between D and D+I has been divided by the volume

of all drops included in the sample see Table I of Reference

26).

2.0 The measurements of fuel drop distribution function made

26
by Ingebo on a Lox/ethanol engine ( under firing conditions)

and on sprays from impi**ging n "'_-_-_ T_ _n _r streams 27

give us an unusually pertinent amount of information for the

selection of the initial drop distribution function for the

engine under consideration. In 1958, Ingebo, using n-Heptane

impinging jets (90 ° ) in air-streams, measured the drop distribu-

tion function at 8" from the impingement point over a specific

range of orifice diameters (Dj), liquid jet velocity (Vj) and

velocity difference (AV) (see Table I of Ingebo26). He found

that the distribution function ii correlated well his measure-

ments, i.e.

(Nukiyama-Tanasawa) (13)

Furthermore, he found the following correlation between

Dj, Vj, and _V

_Jo

D30,

Diameters in Inches

Velocities in

Feet/sac

(14)
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In the engine under consideration Dj = .059", Vj = 2540 cm/sec =

86.7 ft/sec, AV(@ 5") _ 4000cm/sec = 130 ft/sec and Ingebo's

correlation yields D30 = Iii _ . Directly from his table 26 for

Dj = .06, Vj = 65 ft/sec and AV = 115 ft/sec, one reads

D30 = 131 _ and Dma x = 325 _ .

In 1960 in a Lox/ethanol firing engine, Ingebo 27 again found

that the above distribution function correlated well the drop

size measurements at 4" from the injector. The ethanol jets

however were not impinging. He had Vj = 25 ft/sec, Dj = .032",

_V_ 80 ft/sec (estimated from the velocity of his smaller drops)

which, applying his earlier correlation, would have given

D30 = 167_ . He measured D.o0 = 155_ and Dmax = 344_ , which

indicates that his cold flow correlation gives a reasonable esti-

mate of D30 also under firing conditions and different impinge r

ment angle (provided the relative velocity is high enough).

Thus, it was concluded that, for the engine under considera-

tion:

I) A Nu_iyama-Tanasawa distribution function is likely

to give a good description of the drop sizes near

the injector (it will actually be used at the in-

jector).

2) The maximum drop diameter is likely to be between

300 _ and 340_

3) _ is likely to be between ii0 _ and 150_ although
s estimate might not be as accurate as the previous

two.

Although _ 14_ iyama-Tanasawa distribution function was used,

it was not used in the form given by Ingebo (Equation 13, i.e.,

volume of drops with diameter between D and D+I divided by the
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volume of all drops) but rather in the form ib (number of

drop with diameter between D and D+I out of the total number

of drops )4,_' -- _ 2)& 6-- 3.qlS" '_"_e

which was actually written as

_ _.91£ _.se

(15)

and 4o is then the "total number of drops per unit length of

the combustion chamber with radius between r and r+l" its

dimensions are i/cm 2. The following expression will also be

used

of the initial

( z,,2 /0"L

= local (at x) percentage

Jo t.
(at x = O) number of drops with radius between

r and r + i0_.

Finally the coefficient B, which is related to the total

number of drops per unit length of combustion chamber at the in-

jector, will have to be determined by proper conditions (see

Appendix F).



214

APPENDIX D: SPRAY EQUATION

In the first section of this appendix, the spray equation

is systematically simplified. In the second section, the vapor-

ization rate is related to WF/_Ffor the case in which4= _(;_ ).

In the third section, it is shown that _ =4 (_) if _(wp/w_)/_-

= constant.

1.0
9

The spray equation (see Williams ) can be written as

follows

(r/)

where

a)

b)

only liquid fuel drops are considered

/(%,x,_¢ ,4) _" J_ J_C = total number of drops with

radius between % and _+JL , with velocity between _ and
_Lt÷Jk¢ in the engine length Jm between _ and _÷J_ ,

at time_ . Hence the dimensions of _ here are(_/_X_.

(1)

c) R = R (% X_ _, _ )t___d_/_ s rate of change of _ follow-

ing a liquid drop.

d)
on a liquid drop

force per unit mass acting

e) O = O (e,_, _4 • @ )= the rate of increase of _ due to

drops formation (nucleation) or destruction (break up).

f)r --r" )-collisions.
the rate of increase of # due to

Considering only steady state and neglecting nucleations, break-

ups, and collisions one gets

(2)
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where R = R ( _, X, I/_ ); F = F (.%+, _, _¢ ); f = f (4, x,24_ )

and the dimensions of f are (_._e_/_X_/_).

If one assumes that, at any given x , all drops having a given 41.

have the same velocity, he practically assumes that Ue= _C_t) •

He can then conceptually substitute this new I(,.WI_ K,e ) in the

above expressions for R, F, f , thus getting

R (% x,,.( (%t))- R(4,x)
F ('_,., *_ (_,z))= F (% _.)

and Equation 2 simplifies to

_z

where R = R( _ _ ), f = f ( _,_ ),

dnd the dimensions of f are ( i/_'/_ ),

total number of drops with radius between

engine length _ between x and z+_.

and _Z÷J1. in the

If one further assumes that, at any given Z , all drops have a

specific % and a specific _ , he practically assumes that

= % (_) and W(=_(K). He can then conceptually substitute

these new • = _ (x), _ =_(z) in the previous expressions for

R and f and get

R ( •E.),z) = R(a)

{(_(.) ,.) = _C.>

and Equation 3 simplifies to

(3)

(4)

where /-_C 2f) and
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and the dimension of _ is ( V_ ) and _a = total number

of drops in the engine length _z between _ and X+Jx.

If one further assumes that _, is constant for all _'s,

i.e., _=_o ' the above equation then implies that_ = const ,

i.e., the total number of drops in the unit engine length is

constant.

2.0 The case in which _= _ (_), and _--_e/_) is now further

considered. Equation 4 is then the spray equation. The proper

way of calculating the local liquid fuel flow rate is to relate

its local change to the local change of drop radius and to the

local number of drops

However, consider the following function

and take its Z-derivative

then the derivative of Equation 6 is equal to Equation 5 since

J_dx _ _%/_ and J ( _ _)/_ _o because of Equation 4.

Thus, the local liquid fuel flow rate calculated by Equation 6

is identical to that calculated by Equation 5 provided in both

equations the same initial value is used. Thus, in this case

Equation 6 can be used to evaluate the local liquid fuel flow.

Then using Equation 6 and applying it at any x

(5)

(6)

and at _ -O
0
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one gets

WF

_r

but

and

t 4 3

,% Y.,4

, '--_ r,_ _o v._
A _F

(Equation 4) thus

,.'= ,,2w,/_,o,

and the drop vaporization rate is given by

(7)

The above equation is valid for both the constant _( (no drag)

rate when the local liquid fuel flux is known as in the present

case (Fig. 12).

3.0 A particular case of some interest is that in which

WoF (8)

Fig. 12 shows that for the first 16" of the engine under con-

sideration, the above relationship could justifiably be accepted

(a similar trend was found in other engine configurations). One

could then get from Equation 7

When Equation 8 applies, the distribution function must be a

function of _ only, and the above vaporization rate proportion-

alities must hold. In general one has
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I
For this integral to be constant for all _'s, either the

integrand is zero or

- ,.,.)
in which case the above integral is equal to

4V_ z
(9)

D

since the integrand is zero for all values of _ and _ except

for _ and _¥ which can still be different at different _ 's.

It then follows that _ = _ (l). Furthermore, for Expression

9 to be constant one must have

But in the case in which _= _ (x),

ready been shown that _C _ = M4o

as in this case, it has al-

Thus, substituting one

gets
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APPENDIX E: NUMERICALSOLUTION OF THE SPRAY EQUATION

In the first section of this appendix, the scheme which

was used to integrate the spray equation is explained. In

the second section it is shown that there are two identical

and independent ways of computing Wp/W0F so that the accuracy

of the integration can be tested. In the third section it is

shown how a parameter appearing in the initial distribution

function is determined.

1.0 The solution of

where

to the solution of

'J,j= ¢% + e= j

along _,_ lines defined by

4_ R

is equivalent

where _ is the vaporization rate equation, taken to be of the

following general form

_=- A [4+ _ where _ _2;_f4"_ and j(_ 4, _, =

constants. Then the above equation becomes

ax 8_ _t

In general this equation contains _/¢-_= (_4)which

unknown and therefore cannot be solved directly

(i)

(2)

(3)

in turn is

to give _-_(=t).
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One more equation for _e is needed; the drag equation can be

used

_X = dZ I= _g (4)

d_,',,-,, ('_ ";_ ¢,.)
[In particular for _.._= 24//_,./" one has _I"_ ='_S--"_ _=';'"-'--'U¢ ]

Thus one first solves the system of Equations 3 and 4 to get

"-_(_0 _#, 14t.) ; _, - _4_(_s _*/_'e) and then evaluates

Equation 2

This is a possible approach to solve Equation 1 for both nu-

by

(5)

merlcai and anaiyticdl uL_u,,uu_s.

In both cases one must evaluateg_/9_ and _/_Z where _=_(_4)

and _t --_ (%_) _ in general contains _ % _4_ and 74 C is

not known explicitly but is defined implicitly by the drag

equation (Eq. 4). Thus one can write

The terms (_/_)

#_P& _¢_ _.

problem and are given below:

and _/_=(, do not present any

_ _x_c_ -F _ "_ '--_ - P÷_
9 _ Explicit

Dependence Dependence

(6)

(7)

Since
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also:
i

z f 9/f<-.el

m

("'",)
(8)

The terms _c/_ andgWG_ were evaluated by finite differ-

ences since _G-_(_s not explicitly known. For each _o and

_@o (the same for all_'s ) the vaporization and the trajec-

tory of the drop were computed, using the vaporization rate

equation (3) and the drag equation (4) and numerically inte-

grating them with respect to _ The gas variables appearing

in those equations ( _ ) are known from Figures 9 and I0.

Thus, at each X , _ and _ are now known for each and all the

's . To illustrate how these quantities are used to deter-

mine _C_#, and g_¢/_z use is made of Figure 47. In the upper

portion of this figure, _ is plotted versus X for various _ $ .

A similar set of curves could have been plotted for _ for

various _'s Thus at points A and B (at a constant _ )

both _ and % are known and _;(_/_&;_ at constant _ can be

evaluated. In the lower portion of this figure, _e is plotted

versus _ for various _'s By the _-integration of Equations

3 and 4 one moves from point C to point E (and from G to F) by

changing both W_ and _ . Thus to evaluate 4_,/_at constant _ ,

it is necessary to extrapolate the value of _ at point D from

its values at points E and F. A linear extrapolation was used

and _c/_1_at constant _ was thus determined.
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2.0 It is shown that, if _ (_)

equation

satisfies the following

(9)

Then the local liquid fuel flow rate can be calculated by

either of the following two expressions

WopI A ..
(i0)

Wp

Wep

_..(x)
,N/tw

(ii)

Equation i0 relates local changes of liquid fuel flow rate to

the local chanqes of drop radius (R) and drop number (_).
l

Equation ii simply counts all the drops going through a specific

cross-section in the unit time. The fact that there are two

different ways to calculate the same parameter, for a given solu-

tion of Equation 9, affords an excellent check on the validity

of the solution itself. This check was systematically included

in the calculations, and was satisfactorily met in all cases.

To apply Equations i0 and ii, one must first determine _ (_)

through Equation 6. Equations 7 and 8 and the finite difference

evaluations of _(_ and _T2,/9 x are in the process used. ThUS,

there are quite a few numerical computations involved in getting

WF/ _4: and errors can be expected to accumulate. Neverthe-

less, the WF/NoF calculated by the two methods agree quite close-

ly in all cases. The best agreement was found when the drag is

zero so that two of the three terms appearing in Equation 6 are

identically zero. The largest difference was found when all the
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terms of Equation 6 are different from zero. Even in such cases

the difference is so small that it can hardly be noticed in

figures such as Figure 30. The difference was found to be a

function of _z (not so much of A_. ) particularly for the high

drag cases w_ere the velocity of the drops undergoes drastic

changes if Az is too large. In most of the calculations _-|O_

and _x __ .5 cm were used to keep the computation time down

but in the high drag cases it was necessary to use 4_m_.25 cm,

thus doubling the computation time.

To prove our statement that Equations i0 and ii are equiva-

lent, take the 2--derivative of Equation ii

_'4 3

If Equation 9 is satisfied then one can sutstitute

Substituting and integrating by parts, one gets

!
-,,,,,=J Wo,= J='=,

A Woj: o ""_ .)o

f

+
A w,_: &
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But the term in the above brackets is zero since by

definition _=_ for any _ including _M_x Thus the

derivative of Equation Ii is equal to Equation i0 for any 2 •

Thus, the local liquid fuel flow rate calculated by Equation

ii is identical to that calculated by Equation i0 provided,in

both equations,the same initial value is used.

3.0 In Appendix C, the following initial distribution function

was selected

_ 3.qlf z_ °

where the factor B was not specified since it is related to

the flow rate into the specific engine under consideration.

Equation Ii can now be used to determine B

from which it follows that

3 A w, r "4 ('
._- mO i

where

-_ 3q,[


